Deterministic Solvers for the Boltzmann Transport Equation [recurso electrónico] / by Sung-Min Hong, Anh-Tuan Pham, Christoph Jungemann.

Por: Hong, Sung-Min [author.]Colaborador(es): Pham, Anh-Tuan [author.] | Jungemann, Christoph [author.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Computational MicroelectronicsEditor: Vienna : Springer Vienna : Imprint: Springer, 2011Descripción: XVIII, 227 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783709107782Tema(s): Engineering | Electronics | Optical materials | Engineering | Electronics and Microelectronics, Instrumentation | Semiconductors | Optical and Electronic MaterialsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 621.381 Clasificación LoC:TK7800-8360TK7874-7874.9Recursos en línea: Libro electrónicoTexto En: Springer eBooksResumen: The book covers all aspects from the expansion of the Boltzmann transport equation with harmonic functions to application to devices, where transport in the bulk and in inversion layers is considered. The important aspects of stabilization and band structure mapping are discussed in detail. This is done not only for the full band structure of the 3D k-space, but also for the warped band structure of the quasi 2D hole gas. Efficient methods for building the Schrödinger equation for arbitrary surface or strain directions, gridding of the 2D k-space and solving it together with the other two equations are presented.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos TK7800 -8360 (Browse shelf(Abre debajo)) 1 No para préstamo 377004-2001

The book covers all aspects from the expansion of the Boltzmann transport equation with harmonic functions to application to devices, where transport in the bulk and in inversion layers is considered. The important aspects of stabilization and band structure mapping are discussed in detail. This is done not only for the full band structure of the 3D k-space, but also for the warped band structure of the quasi 2D hole gas. Efficient methods for building the Schrödinger equation for arbitrary surface or strain directions, gridding of the 2D k-space and solving it together with the other two equations are presented.

19

Con tecnología Koha