Bootstrapping Stationary ARMA-GARCH Models [recurso electrónico] / by Kenichi Shimizu.

Por: Shimizu, Kenichi [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoEditor: Wiesbaden : Vieweg+Teubner, 2010Descripción: 148 p. 12 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783834897787Tema(s): Mathematics | Mathematics | Mathematics, generalFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 510 Clasificación LoC:QA1-939Recursos en línea: Libro electrónicoTexto
Contenidos:
Bootstrap Does not Always Work -- Parametric AR(p)-ARCH(q) Models -- Parametric ARMA(p, q)- GARCH(r, s) Models -- Semiparametric AR(p)-ARCH(1) Models.
En: Springer eBooksResumen: Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to take too much risk. Kenichi Shimizu investigates the limit of the two standard bootstrap techniques, the residual and the wild bootstrap, when these are applied to the conditionally heteroscedastic models, such as the ARCH and GARCH models. The author shows that the wild bootstrap usually does not work well when one estimates conditional heteroscedasticity of Engle’s ARCH or Bollerslev’s GARCH models while the residual bootstrap works without problems. Simulation studies from the application of the proposed bootstrap methods are demonstrated together with the theoretical investigation.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA1 -939 (Browse shelf(Abre debajo)) 1 No para préstamo 377101-2001

Bootstrap Does not Always Work -- Parametric AR(p)-ARCH(q) Models -- Parametric ARMA(p, q)- GARCH(r, s) Models -- Semiparametric AR(p)-ARCH(1) Models.

Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to take too much risk. Kenichi Shimizu investigates the limit of the two standard bootstrap techniques, the residual and the wild bootstrap, when these are applied to the conditionally heteroscedastic models, such as the ARCH and GARCH models. The author shows that the wild bootstrap usually does not work well when one estimates conditional heteroscedasticity of Engle’s ARCH or Bollerslev’s GARCH models while the residual bootstrap works without problems. Simulation studies from the application of the proposed bootstrap methods are demonstrated together with the theoretical investigation.

19

Con tecnología Koha