Bootstrapping Stationary ARMA-GARCH Models [recurso electrónico] / by Kenichi Shimizu.
Tipo de material: TextoEditor: Wiesbaden : Vieweg+Teubner, 2010Descripción: 148 p. 12 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783834897787Tema(s): Mathematics | Mathematics | Mathematics, generalFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 510 Clasificación LoC:QA1-939Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA1 -939 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 377101-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA1 -939 Factors and Factorizations of Graphs | QA1 -939 European Success Stories in Industrial Mathematics | QA1 -939 PT-Symmetric Schrödinger Operators with Unbounded Potentials | QA1 -939 Bootstrapping Stationary ARMA-GARCH Models | QA1 -939 Quantum Groups and Noncommutative Spaces | QA1 -939 Matematica e Arte | QA1 -939 Mathematical Analysis II |
Bootstrap Does not Always Work -- Parametric AR(p)-ARCH(q) Models -- Parametric ARMA(p, q)- GARCH(r, s) Models -- Semiparametric AR(p)-ARCH(1) Models.
Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to take too much risk. Kenichi Shimizu investigates the limit of the two standard bootstrap techniques, the residual and the wild bootstrap, when these are applied to the conditionally heteroscedastic models, such as the ARCH and GARCH models. The author shows that the wild bootstrap usually does not work well when one estimates conditional heteroscedasticity of Engle’s ARCH or Bollerslev’s GARCH models while the residual bootstrap works without problems. Simulation studies from the application of the proposed bootstrap methods are demonstrated together with the theoretical investigation.
19