Machine Learning for Evolution Strategies [recurso electrónico] / by Oliver Kramer.
Tipo de material: TextoSeries Studies in Big Data ; 20Editor: Cham : Springer International Publishing : Imprint: Springer, 2016Descripción: IX, 124 p. 38 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319333830Tema(s): Engineering | Data mining | Artificial intelligence | Computer simulation | Sociophysics | Econophysics | Computational intelligence | Engineering | Computational Intelligence | Simulation and Modeling | Data Mining and Knowledge Discovery | Socio- and Econophysics, Population and Evolutionary Models | Artificial Intelligence (incl. Robotics)Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q342Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | 1 | No para préstamo |
Part I Evolution Strategies -- Part II Machine Learning -- Part III Supervised Learning.
This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.