Data and Information Quality [recurso electrónico] : Dimensions, Principles and Techniques / by Carlo Batini, Monica Scannapieco.

Por: Batini, Carlo [author.]Colaborador(es): Scannapieco, Monica [author.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Data-Centric Systems and ApplicationsEditor: Cham : Springer International Publishing : Imprint: Springer, 2016Descripción: XXVIII, 500 p. 260 illus., 53 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319241067Tema(s): Computer science | Knowledge management | Health informatics | Data structures (Computer science) | Database management | Computer Science | Database Management | Data Structures, Cryptology and Information Theory | Information Systems Applications (incl. Internet) | Health Informatics | Knowledge ManagementFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 005.74 Clasificación LoC:QA76.9.D3Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction to Information Quality -- Data Quality Dimensions -- Information Quality Dimensions for Maps and Texts -- Data Quality Issues in Linked open data -- Quality Of Images -- Models for Information Quality -- Activities for Information Quality -- Object Identification -- Recent Advances in Object Identification -- Data Quality Issues in Data Integration Systems -- Information Quality in Use -- Methodologies for Information Quality Assessment and Improvement -- Information Quality in Healthcare -- Quality of Web Data and Quality of Big Data: Open Problems -- References -- Index.
En: Springer eBooksResumen: This book provides a systematic and comparative description of the vast number of research issues related to the quality of data and information. Itdoes so by delivering a sound, integrated and comprehensive overview of the state of the art and future development of data and information quality in databases and information systems. To this end, it presents an extensive description of the techniques that constitute the core of data and information quality research, including record linkage (also called object identification), data integration, error localization and correction, and examines the related techniques in a comprehensive and original methodological framework. Quality dimension definitions and adopted models are also analyzed in detail, and differences between the proposed solutions are highlighted and discussed. Furthermore, while systematically describing data and information quality as an autonomous research area, paradigms and influences deriving from other areas, such as probability theory, statistical data analysis, data mining, knowledge representation, and machine learning are also included. Last not least, the book also highlights very practical solutions, such as methodologies, benchmarks for the most effective techniques, case studies, and examples. The book has been written primarily for researchers in the fields of databases and information managementor in natural sciences who are inte rested in investigating properties ofdata and information that have an impact on the quality of experiments, processes and on real life. The material presented is also sufficiently self-contained for masters or PhD-level courses, and it covers all the fundamentals and topics without the need for other textbooks. Data and information system administrators and practitioners, who deal with systems exposed to data-quality issues and as a result need a systematization of the field and practical methods in the area, will also benefit from the combination of concrete practical approaches with sound theoretical formalisms.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Introduction to Information Quality -- Data Quality Dimensions -- Information Quality Dimensions for Maps and Texts -- Data Quality Issues in Linked open data -- Quality Of Images -- Models for Information Quality -- Activities for Information Quality -- Object Identification -- Recent Advances in Object Identification -- Data Quality Issues in Data Integration Systems -- Information Quality in Use -- Methodologies for Information Quality Assessment and Improvement -- Information Quality in Healthcare -- Quality of Web Data and Quality of Big Data: Open Problems -- References -- Index.

This book provides a systematic and comparative description of the vast number of research issues related to the quality of data and information. Itdoes so by delivering a sound, integrated and comprehensive overview of the state of the art and future development of data and information quality in databases and information systems. To this end, it presents an extensive description of the techniques that constitute the core of data and information quality research, including record linkage (also called object identification), data integration, error localization and correction, and examines the related techniques in a comprehensive and original methodological framework. Quality dimension definitions and adopted models are also analyzed in detail, and differences between the proposed solutions are highlighted and discussed. Furthermore, while systematically describing data and information quality as an autonomous research area, paradigms and influences deriving from other areas, such as probability theory, statistical data analysis, data mining, knowledge representation, and machine learning are also included. Last not least, the book also highlights very practical solutions, such as methodologies, benchmarks for the most effective techniques, case studies, and examples. The book has been written primarily for researchers in the fields of databases and information managementor in natural sciences who are inte rested in investigating properties ofdata and information that have an impact on the quality of experiments, processes and on real life. The material presented is also sufficiently self-contained for masters or PhD-level courses, and it covers all the fundamentals and topics without the need for other textbooks. Data and information system administrators and practitioners, who deal with systems exposed to data-quality issues and as a result need a systematization of the field and practical methods in the area, will also benefit from the combination of concrete practical approaches with sound theoretical formalisms.

Con tecnología Koha