Homomorphic Signature Schemes [recurso electrónico] : A Survey / by Giulia Traverso, Denise Demirel, Johannes Buchmann.

Por: Traverso, Giulia [author.]Colaborador(es): Demirel, Denise [author.] | Buchmann, Johannes [author.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries SpringerBriefs in Computer ScienceEditor: Cham : Springer International Publishing : Imprint: Springer, 2016Descripción: XI, 64 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319321158Tema(s): Computer science | Data structures (Computer science) | Discrete mathematics | Computer Science | Data Structures, Cryptology and Information Theory | Discrete MathematicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 005.74 Clasificación LoC:QA76.9.D35Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1 From Digital to Homomorphic Signature Schemes -- Chapter 2 Homomorphic Signature Schemes -- Chapter 3 Evaluation of Homomorphic Signature Schemes -- Chapter 4 State of the Art of Homomorphic Signature Schemes -- Chapter 5 Suitable Homomorphic Signature Schemes for eVoting, Smart Grids, and eHealth -- Chapter 6 Conclusion -- References.
En: Springer eBooksResumen: Homomorphic signature schemes are an important primitive for many applications and since their introduction numerous solutions have been presented. Thus, in this work we provide the first exhaustive, complete, and up-to-date survey about the state of the art of homomorphic signature schemes. First, the general framework where homomorphic signatures are defined is described and it is shown how the currently available types of homomorphic signatures can then be derived from such a framework. In addition, this work also presents a description of each of the schemes presented so far together with the properties it provides. Furthermore, three use cases, electronic voting, smart grids, and electronic health records, where homomorphic signature schemes can be employed are described. For each of these applications the requirements that a homomorphic signature scheme should fulfill are defined and the suitable schemes already available are listed. This also highlights the shortcomings of current solutions. Thus, this work concludes with several ideas for future research in the direction of homomorphic signature schemes.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Chapter 1 From Digital to Homomorphic Signature Schemes -- Chapter 2 Homomorphic Signature Schemes -- Chapter 3 Evaluation of Homomorphic Signature Schemes -- Chapter 4 State of the Art of Homomorphic Signature Schemes -- Chapter 5 Suitable Homomorphic Signature Schemes for eVoting, Smart Grids, and eHealth -- Chapter 6 Conclusion -- References.

Homomorphic signature schemes are an important primitive for many applications and since their introduction numerous solutions have been presented. Thus, in this work we provide the first exhaustive, complete, and up-to-date survey about the state of the art of homomorphic signature schemes. First, the general framework where homomorphic signatures are defined is described and it is shown how the currently available types of homomorphic signatures can then be derived from such a framework. In addition, this work also presents a description of each of the schemes presented so far together with the properties it provides. Furthermore, three use cases, electronic voting, smart grids, and electronic health records, where homomorphic signature schemes can be employed are described. For each of these applications the requirements that a homomorphic signature scheme should fulfill are defined and the suitable schemes already available are listed. This also highlights the shortcomings of current solutions. Thus, this work concludes with several ideas for future research in the direction of homomorphic signature schemes.

Con tecnología Koha