Regulation of Membrane Na+-K+ ATPase [recurso electrónico] / edited by Sajal Chakraborti, Naranjan S Dhalla.

Colaborador(es): Chakraborti, Sajal [editor.] | Dhalla, Naranjan S [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Advances in Biochemistry in Health and Disease ; 15Editor: Cham : Springer International Publishing : Imprint: Springer, 2016Descripción: XI, 436 p. 100 illus., 44 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319247502Tema(s): Life sciences | Molecular biology | Proteins | Cell membranes | Atomic structure | Molecular structure | Spectra | Life Sciences | Protein Structure | Membrane Biology | Protein Science | Atomic/Molecular Structure and Spectra | Molecular MedicineFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 572.633 Clasificación LoC:QD431-431.7Recursos en línea: Libro electrónicoTexto
Contenidos:
Part A -- 1 Na+/K+-ATPase: A Perspective -- 2 Na+/K+-ATPase and Its Role in Signal Transduction -- 3 Na+ K+-ATPase Cell Signaling Pathways and Cancer -- 4 Calcium Controls the P2-ATPase Mediated Homeostasis: Essential Role of NaAF -- 5 Na+/K+-ATPase ?4: An Isoform Dedicated to Sperm Function -- 6 The Role of the 2nd Na+ Pump in Mammals and Parasites -- 7 Myocardial Na+/K+-ATPase and SERCA: Clinical and Pathological Significance from a Cytological perspective -- 8 Understanding the Dysfunction of Na+/K+-ATPase in Rapid-Onset Dystonia- Parkinsonism and Amyotrophic Lateral Sclerosis -- 9 Activity of Membrane ATPases in Human Erythrocytes Under the Influence of Highly Hydroxylated Fullerenol -- 10 Xenobiotics-mediated Modulation of ATPases and Biomedical Implications -- 11 Emerging Role of Dysadherin in Metastasis -- 12 The Astrocytic Na+/K+-ATPase - Stimulation by Increased Extracellular K+, ?-Adrenergic Activation, Ouabain-mediated Signaling, and Interaction with the Transporter NKCC1 -- 13 Uncoupling of P-type ATPases -- 14 Phospholemman: A Brief Overview -- 15 Regulation of the Cardiac Na+/K+-ATPase by Phospholemman -- 16 Regulation of Brain Na+/K+- ATPase Activity by Noradrenaline with Particular Reference to Normal and Altered Rapid Eye Movement Sleep -- 17 Regulation Na+/K+-ATPase Activity in the Nervous System -- 18 Regulation of Membrane Na+/K+ ATPase in Health and Disease -- 19 Redox Regulation of the Na+/K+ ATPase in the Cardiovascular System -- 20 Regulation of Na+/K+-ATPase in Pulmonary Vasculature -- 21 Exercise-induced Regulation of the Na, K-pump in Skeletal Muscles -- 22 Advances in the Understanding of Renal Proximal Tubular Na+/K+-ATPase Regulation by Parathyroid Hormone and Dopamine -- 23 Regulation of Na+/ K+-ATPase in Epithelial-Mesenchymal Transition and Cancer -- 24 Metal Based Compounds, Modulators of Na+/K+-ATPase with Anticancer Activity.
En: Springer eBooksResumen: Na+-K+ ATPase or Na-pump ATPase, a member of ?P?-type ATPase superfamily, is characterized by association of multiple isoforms mainly of it?s ?- and ?- subunits. At present four different ?- (?-1,?-2,?-3 and ?-4) and three ?- (?-1, ?-2, and ?-3) isoforms have been identified in mammalian cells and their differential expressions are tissue specific. Regulation of Na+-K+ ATPase activity is an important but a complex process, which involves short-term and long-term mechanisms. Short-term regulation of Na+-K+ ATPase is either mediated by changes in intracellular Na+ concentrations that directly affect the Na+-pump activity or by phosphorylation/dephosphorylation-mediated by some stimulants leading to changes in its expression and transport properties. On the other hand, long-term regulation of Na+-K+ ATPase is mediated by hormones, such as mineralocorticoids and thyroid hormones, which cause changes in the transcription of genes of ?- and ?- subunits leading to an increased expression in the level of Na+-pump. Several studies have revealed a relatively new type of regulation that involves the association of small, single span membrane proteins with this enzyme. These proteins belong to the FXYD family, the members of which share a common signature sequence encompassing the transmembrane domain adjacent to the isoform(s) of ?-? subunits of Na+-K+ ATPase. Considering the extraordinary importance of Na+-K+ ATPase in cellular function, several internationally established investigators have contributed their articles in the monograph entitled ?Regulation of Membrane Na+-K+ ATPase? for inspiring young scientists and graduate students to enrich their knowledge on the enzyme, and we are sure that this book will soon be considered as a comprehensive scientific literature in the area of Na+-K+ ATPase regulation in health and disease.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Part A -- 1 Na+/K+-ATPase: A Perspective -- 2 Na+/K+-ATPase and Its Role in Signal Transduction -- 3 Na+ K+-ATPase Cell Signaling Pathways and Cancer -- 4 Calcium Controls the P2-ATPase Mediated Homeostasis: Essential Role of NaAF -- 5 Na+/K+-ATPase ?4: An Isoform Dedicated to Sperm Function -- 6 The Role of the 2nd Na+ Pump in Mammals and Parasites -- 7 Myocardial Na+/K+-ATPase and SERCA: Clinical and Pathological Significance from a Cytological perspective -- 8 Understanding the Dysfunction of Na+/K+-ATPase in Rapid-Onset Dystonia- Parkinsonism and Amyotrophic Lateral Sclerosis -- 9 Activity of Membrane ATPases in Human Erythrocytes Under the Influence of Highly Hydroxylated Fullerenol -- 10 Xenobiotics-mediated Modulation of ATPases and Biomedical Implications -- 11 Emerging Role of Dysadherin in Metastasis -- 12 The Astrocytic Na+/K+-ATPase - Stimulation by Increased Extracellular K+, ?-Adrenergic Activation, Ouabain-mediated Signaling, and Interaction with the Transporter NKCC1 -- 13 Uncoupling of P-type ATPases -- 14 Phospholemman: A Brief Overview -- 15 Regulation of the Cardiac Na+/K+-ATPase by Phospholemman -- 16 Regulation of Brain Na+/K+- ATPase Activity by Noradrenaline with Particular Reference to Normal and Altered Rapid Eye Movement Sleep -- 17 Regulation Na+/K+-ATPase Activity in the Nervous System -- 18 Regulation of Membrane Na+/K+ ATPase in Health and Disease -- 19 Redox Regulation of the Na+/K+ ATPase in the Cardiovascular System -- 20 Regulation of Na+/K+-ATPase in Pulmonary Vasculature -- 21 Exercise-induced Regulation of the Na, K-pump in Skeletal Muscles -- 22 Advances in the Understanding of Renal Proximal Tubular Na+/K+-ATPase Regulation by Parathyroid Hormone and Dopamine -- 23 Regulation of Na+/ K+-ATPase in Epithelial-Mesenchymal Transition and Cancer -- 24 Metal Based Compounds, Modulators of Na+/K+-ATPase with Anticancer Activity.

Na+-K+ ATPase or Na-pump ATPase, a member of ?P?-type ATPase superfamily, is characterized by association of multiple isoforms mainly of it?s ?- and ?- subunits. At present four different ?- (?-1,?-2,?-3 and ?-4) and three ?- (?-1, ?-2, and ?-3) isoforms have been identified in mammalian cells and their differential expressions are tissue specific. Regulation of Na+-K+ ATPase activity is an important but a complex process, which involves short-term and long-term mechanisms. Short-term regulation of Na+-K+ ATPase is either mediated by changes in intracellular Na+ concentrations that directly affect the Na+-pump activity or by phosphorylation/dephosphorylation-mediated by some stimulants leading to changes in its expression and transport properties. On the other hand, long-term regulation of Na+-K+ ATPase is mediated by hormones, such as mineralocorticoids and thyroid hormones, which cause changes in the transcription of genes of ?- and ?- subunits leading to an increased expression in the level of Na+-pump. Several studies have revealed a relatively new type of regulation that involves the association of small, single span membrane proteins with this enzyme. These proteins belong to the FXYD family, the members of which share a common signature sequence encompassing the transmembrane domain adjacent to the isoform(s) of ?-? subunits of Na+-K+ ATPase. Considering the extraordinary importance of Na+-K+ ATPase in cellular function, several internationally established investigators have contributed their articles in the monograph entitled ?Regulation of Membrane Na+-K+ ATPase? for inspiring young scientists and graduate students to enrich their knowledge on the enzyme, and we are sure that this book will soon be considered as a comprehensive scientific literature in the area of Na+-K+ ATPase regulation in health and disease.

Con tecnología Koha