Cognitive Supervision for Robot-Assisted Minimally Invasive Laser Surgery [recurso electrónico] / by Loris Fichera.

Por: Fichera, Loris [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Springer Theses, Recognizing Outstanding Ph.D. ResearchEditor: Cham : Springer International Publishing : Imprint: Springer, 2016Descripción: XIX, 99 p. 62 illus., 38 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319303307Tema(s): Engineering | Minimally invasive surgery | User interfaces (Computer systems) | Robotics | Automation | Biomedical engineering | Engineering | Biomedical Engineering | Robotics and Automation | User Interfaces and Human Computer Interaction | Minimally Invasive SurgeryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 610.28 Clasificación LoC:R856-857Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction -- Background: Laser Technology and Applications to Clinical Surgery -- Cognitive Supervision for Transoral Laser Microsurgery -- Learning the Temperature Dynamics During Thermal Laser Ablation -- Modeling the Laser Ablation Process -- Realization of a Cognitive Supervisory System for Laser Microsurgery -- Conclusions and Future Research Directions.
En: Springer eBooksResumen: This thesis lays the groundwork for the automatic supervision of the laser incision process, which aims to complement surgeons? perception of the state of tissues and enhance their control over laser incisions. The research problem is formulated as the estimation of variables that are representative of the state of tissues during laser cutting. Prior research in this area leveraged numerical computation methods that bear a high computational cost and are not straightforward to use in a surgical setting. This book proposes a novel solution to this problem, using models inspired by the ability of experienced surgeons to perform precise and clean laser cutting. It shows that these new models, which were extracted from experimental data using statistical learning techniques, are straightforward to use in a surgical setup, allowing greater precision in laser-based surgical procedures.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Introduction -- Background: Laser Technology and Applications to Clinical Surgery -- Cognitive Supervision for Transoral Laser Microsurgery -- Learning the Temperature Dynamics During Thermal Laser Ablation -- Modeling the Laser Ablation Process -- Realization of a Cognitive Supervisory System for Laser Microsurgery -- Conclusions and Future Research Directions.

Open Access

This thesis lays the groundwork for the automatic supervision of the laser incision process, which aims to complement surgeons? perception of the state of tissues and enhance their control over laser incisions. The research problem is formulated as the estimation of variables that are representative of the state of tissues during laser cutting. Prior research in this area leveraged numerical computation methods that bear a high computational cost and are not straightforward to use in a surgical setting. This book proposes a novel solution to this problem, using models inspired by the ability of experienced surgeons to perform precise and clean laser cutting. It shows that these new models, which were extracted from experimental data using statistical learning techniques, are straightforward to use in a surgical setup, allowing greater precision in laser-based surgical procedures.

Con tecnología Koha