Introduction to real analysis / Robert G. Bartle, Donald R. Sherbert.
Tipo de material: TextoIdioma: Inglés Detalles de publicación: Hoboken, NJ : Wiley, c2011Edición: 4th edDescripción: xiii, 402 p. : il. ; 26 cmISBN: 9780471433316 (hardback); 0471433314 (hardback)Tema(s): Mathematical analysis | Functions of real variables | Análisis matemático | Funciones de variables realesClasificación LoC:QA300 | B37 2011Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro | Biblioteca Central Ensenada | Acervo General | QA300 B37 2011 (Browse shelf(Abre debajo)) | 1 | Disponible | ENS090094 |
Navegando Biblioteca Central Ensenada Estantes, Código de colección: Acervo General Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA300 A6618 1976 Análisis matemático / | QA300 A6618 1976 Análisis matemático / | QA300 A7918 2009 Matemáticas aplicadas a la administración y a la economía / | QA300 B37 2011 Introduction to real analysis / | QA300 B73 A first course in mathematical analysis / | QA300 C38 2006 Introducción de análisis matemático I : cálculo diferencial de una variable / | QA303 A9718 2010 Cálculo / |
Incluye referencias bibliográficas e índice
Ch. 1.Preliminaries: 1.1. Sets and functions; 1.2. Mathematical induction; 1.3. Finite and infinite sets -- Ch. 2. The Real Numbers: 2.1. The algebraic and order properties of R; 2.2. Absolute value and real line; 2.3. The completeness property of R; 2.4. Applications of the supremum property; 2.5. Intervals -- Ch. 3. Sequences and series: 3.1. Sequences and their limits; 3.2. Limit theorems; 3.3. Monotone sequences; 3.4. Subsequences and the Bolzano-Weierstrass theorem; 3.5. The Cauchy criterion; 3.6. Properly divergent sequences; 3.7. Introduction to infinite series -- Ch. 4. Limits: 4.1. Limits of functions; 4.2. Limit theorems; 4.3. Some extensions of the limit concept -- Ch. 5. Continuous functions: 5.1. Continuous runctions; 5.2 . Combinations of continuous runctions; 5.3. Continuous functions on intervals; 5.4. Uniform continuity; 5.5. Continuity and gauges; 5.6. Monotone and inverse functions -- Ch. 6. Differentiation: 6.1. The derivative; 6.2. The mean value theorem; 6.3. L'Hospital's rules; 6.4. Taylor's Theorem -- Ch. 7. The Riemann integral: 7.1. Riemann integral; 7.2. Riemann integrable functions; 7.3. The fundamental theorem; 7.4. The Darboux integral; 7.5. Approximate integration -- Ch. 8. Sequences of functions: 8.1. Pointwise and uniform convergence; 8.2. Interchange of limits; 8.3. The exponential and logarithmic functions; 8.4. The trigonometric functions -- Ch. 9. Infinite series: 9.1. Absolute convergence; 9.2. Tests for absolute convergence; 9.3. Tests for nonabsolute convergence; 9.4. Series of functions -- Ch. 10. The generalized Riemann integral: 10.1. Definition and main poperties; 10.2. Improper and Lebesgue integrals; 10.3. Infinite intervals; 10.4. Convergence theorems -- Ch. 11. A glimpse into topology: 11.1. Open and closed sets in R; 11.2 Compact sets; 11.3. Continuous functions; 11.4. Metrtic Spaces -- Appendix A. Logic and proofs -- Appendix B. Finite and countable sets -- Appendix C. The Riemann and Lebesgue criteria -- Appendix D. Approximate integration -- Appendix E. Two examples.