Inspired by Nature [electronic resource] : Essays Presented to Julian F. Miller on the Occasion of his 60th Birthday / edited by Susan Stepney, Andrew Adamatzky.

Colaborador(es): Stepney, Susan [editor.] | Adamatzky, Andrew [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Emergence, Complexity and Computation ; 28Editor: Cham : Springer International Publishing : Imprint: Springer, 2018Edición: 1st ed. 2018Descripción: X, 387 p. 168 illus., 78 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319679976Tema(s): Computational intelligence | Artificial intelligence | Algorithms | Computational complexity | Computational Intelligence | Artificial Intelligence | Algorithms | ComplexityFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q342Recursos en línea: Libro electrónicoTexto En: Springer Nature eBookResumen: This book is a tribute to Julian Francis Miller's ideas and achievements in computer science, evolutionary algorithms and genetic programming, electronics, unconventional computing, artificial chemistry and theoretical biology. Leading international experts in computing inspired by nature offer their insights into the principles of information processing and optimisation in simulated and experimental living, physical and chemical substrates. Miller invented Cartesian Genetic Programming (CGP) in 1999, from a representation of electronic circuits he devised with Thomson a few years earlier. The book presents a number of CGP's wide applications, including multi-step ahead forecasting, solving artificial neural networks dogma, approximate computing, medical informatics, control engineering, evolvable hardware, and multi-objective evolutionary optimisations. The book addresses in depth the technique of 'Evolution in Materio', a term coined by Miller and Downing, using a range of examples of experimental prototypes of computing in disordered ensembles of graphene nanotubes, slime mould, plants, and reaction diffusion chemical systems. Advances in sub-symbolic artificial chemistries, artificial bio-inspired development, code evolution with genetic programming, and using Reed-Muller expansions in the synthesis of Boolean quantum circuits add a unique flavour to the content. The book is a pleasure to explore for readers from all walks of life, from undergraduate students to university professors, from mathematicians, computer scientists and engineers to chemists and biologists.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Acceso multiusuario

This book is a tribute to Julian Francis Miller's ideas and achievements in computer science, evolutionary algorithms and genetic programming, electronics, unconventional computing, artificial chemistry and theoretical biology. Leading international experts in computing inspired by nature offer their insights into the principles of information processing and optimisation in simulated and experimental living, physical and chemical substrates. Miller invented Cartesian Genetic Programming (CGP) in 1999, from a representation of electronic circuits he devised with Thomson a few years earlier. The book presents a number of CGP's wide applications, including multi-step ahead forecasting, solving artificial neural networks dogma, approximate computing, medical informatics, control engineering, evolvable hardware, and multi-objective evolutionary optimisations. The book addresses in depth the technique of 'Evolution in Materio', a term coined by Miller and Downing, using a range of examples of experimental prototypes of computing in disordered ensembles of graphene nanotubes, slime mould, plants, and reaction diffusion chemical systems. Advances in sub-symbolic artificial chemistries, artificial bio-inspired development, code evolution with genetic programming, and using Reed-Muller expansions in the synthesis of Boolean quantum circuits add a unique flavour to the content. The book is a pleasure to explore for readers from all walks of life, from undergraduate students to university professors, from mathematicians, computer scientists and engineers to chemists and biologists.

UABC ; Temporal ; 01/01/2021-12/31/2023.

Con tecnología Koha