From Content-based Music Emotion Recognition to Emotion Maps of Musical Pieces [electronic resource] / by Jacek Grekow.

Por: Grekow, Jacek [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Studies in Computational Intelligence ; 747Editor: Cham : Springer International Publishing : Imprint: Springer, 2018Edición: 1st ed. 2018Descripción: XIV, 138 p. 71 illus., 22 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319706092Tema(s): Computational intelligence | Music | Acoustical engineering | Emotions | Pattern recognition | Acoustics | Computational Intelligence | Music | Engineering Acoustics | Emotion | Pattern Recognition | AcousticsFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q342Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction -- Representations of Emotions -- Human Annotation -- MIDI Features -- Hierarchical Emotion Detection in MIDI Files.
En: Springer Nature eBookResumen: The problems it addresses include emotion representation, annotation of music excerpts, feature extraction, and machine learning. The book chiefly focuses on content-based analysis of music files, a system that automatically analyzes the structures of a music file and annotates the file with the perceived emotions. Further, it explores emotion detection in MIDI and audio files. In the experiments presented here, the categorical and dimensional approaches were used, and the knowledge and expertise of music experts with a university music education were used for music file annotation. The automatic emotion detection systems constructed and described in the book make it possible to index and subsequently search through music databases according to emotion. In turn, the emotion maps of musical compositions provide valuable new insights into the distribution of emotions in music and can be used to compare that distribution in different compositions, or to conduct emotional comparisons of different interpretations of the same composition.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Acceso multiusuario

Introduction -- Representations of Emotions -- Human Annotation -- MIDI Features -- Hierarchical Emotion Detection in MIDI Files.

The problems it addresses include emotion representation, annotation of music excerpts, feature extraction, and machine learning. The book chiefly focuses on content-based analysis of music files, a system that automatically analyzes the structures of a music file and annotates the file with the perceived emotions. Further, it explores emotion detection in MIDI and audio files. In the experiments presented here, the categorical and dimensional approaches were used, and the knowledge and expertise of music experts with a university music education were used for music file annotation. The automatic emotion detection systems constructed and described in the book make it possible to index and subsequently search through music databases according to emotion. In turn, the emotion maps of musical compositions provide valuable new insights into the distribution of emotions in music and can be used to compare that distribution in different compositions, or to conduct emotional comparisons of different interpretations of the same composition.

UABC ; Temporal ; 01/01/2021-12/31/2023.

Con tecnología Koha