Interpretability in Deep Learning [electronic resource] / by Ayush Somani, Alexander Horsch, Dilip K. Prasad.
Tipo de material: TextoEditor: Cham : Springer International Publishing : Imprint: Springer, 2023Edición: 1st ed. 2023Descripción: XX, 466 p. 176 illus., 172 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031206399Tema(s): Artificial intelligence | Operations research | Knowledge management | Computer vision | Artificial Intelligence | Operations Research and Decision Theory | Knowledge Management | Computer VisionFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q334-342TA347.A78Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | 1 | No para préstamo |
Acceso multiusuario
Chapter 1. Introduction -- Chapter 2. Neural networks for deep learning -- Chapter 3. Knowledge Encoding and Interpretation -- Chapter 4. Interpretation in Specific Deep Learning Architectures -- Chapter 5. Fuzzy Deep Learning.
This book is a comprehensive curation, exposition and illustrative discussion of recent research tools for interpretability of deep learning models, with a focus on neural network architectures. In addition, it includes several case studies from application-oriented articles in the fields of computer vision, optics and machine learning related topic. The book can be used as a monograph on interpretability in deep learning covering the most recent topics as well as a textbook for graduate students. Scientists with research, development and application responsibilities benefit from its systematic exposition. .
UABC ; Perpetuidad