Neural Text-to-Speech Synthesis [electronic resource] / by Xu Tan.

Por: Tan, Xu [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Artificial Intelligence: Foundations, Theory, and AlgorithmsEditor: Singapore : Springer Nature Singapore : Imprint: Springer, 2023Edición: 1st ed. 2023Descripción: XXV, 201 p. 24 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789819908271Tema(s): Natural language processing (Computer science) | Speech processing systems | Signal processing | Machine learning | Artificial intelligence | Natural Language Processing (NLP) | Speech and Audio Processing | Machine Learning | Artificial IntelligenceFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.35 Clasificación LoC:QA76.9.N38Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1. Introduction -- Part 1. Preliminary -- Chapter 2. Basics of Spoken Language Processing -- Chapter 3. Basics of Deep Learning -- Part 2. Key Components in TTS -- Chapter 4. Text Analyses -- Chapter 5. Acoustic Models -- Chapter 6. Vocoders -- Chapter 7. Fully End-to-End TTS -- Part 3. Advanced Topics in TTS -- Chapter 8. Expressive and Controllable TTS -- Chapter 9. Robust TTS -- Chapter 10. Model-Efficient TTS -- Chapter 11. Data-Efficient TTS -- Chapter 12. Beyond Text-to-Speech Synthesis -- Part 4. Summary and Outlook -- Chapter 13. Summary and Outlook.
En: Springer Nature eBookResumen: Text-to-speech (TTS) aims to synthesize intelligible and natural speech based on the given text. It is a hot topic in language, speech, and machine learning research and has broad applications in industry. This book introduces neural network-based TTS in the era of deep learning, aiming to provide a good understanding of neural TTS, current research and applications, and the future research trend. This book first introduces the history of TTS technologies and overviews neural TTS, and provides preliminary knowledge on language and speech processing, neural networks and deep learning, and deep generative models. It then introduces neural TTS from the perspective of key components (text analyses, acoustic models, vocoders, and end-to-end models) and advanced topics (expressive and controllable, robust, model-efficient, and data-efficient TTS). It also points some future research directions and collects some resources related to TTS. This book is the first to introduce neural TTS in a comprehensive and easy-to-understand way and can serve both academic researchers and industry practitioners working on TTS.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Acceso multiusuario

Chapter 1. Introduction -- Part 1. Preliminary -- Chapter 2. Basics of Spoken Language Processing -- Chapter 3. Basics of Deep Learning -- Part 2. Key Components in TTS -- Chapter 4. Text Analyses -- Chapter 5. Acoustic Models -- Chapter 6. Vocoders -- Chapter 7. Fully End-to-End TTS -- Part 3. Advanced Topics in TTS -- Chapter 8. Expressive and Controllable TTS -- Chapter 9. Robust TTS -- Chapter 10. Model-Efficient TTS -- Chapter 11. Data-Efficient TTS -- Chapter 12. Beyond Text-to-Speech Synthesis -- Part 4. Summary and Outlook -- Chapter 13. Summary and Outlook.

Text-to-speech (TTS) aims to synthesize intelligible and natural speech based on the given text. It is a hot topic in language, speech, and machine learning research and has broad applications in industry. This book introduces neural network-based TTS in the era of deep learning, aiming to provide a good understanding of neural TTS, current research and applications, and the future research trend. This book first introduces the history of TTS technologies and overviews neural TTS, and provides preliminary knowledge on language and speech processing, neural networks and deep learning, and deep generative models. It then introduces neural TTS from the perspective of key components (text analyses, acoustic models, vocoders, and end-to-end models) and advanced topics (expressive and controllable, robust, model-efficient, and data-efficient TTS). It also points some future research directions and collects some resources related to TTS. This book is the first to introduce neural TTS in a comprehensive and easy-to-understand way and can serve both academic researchers and industry practitioners working on TTS.

UABC ; Perpetuidad

Con tecnología Koha