Robot Control and Calibration [electronic resource] : Innovative Control Schemes and Calibration Algorithms / by Xin Luo, Zhibin Li, Long Jin, Shuai Li.

Por: Luo, Xin [author.]Colaborador(es): Li, Zhibin [author.] | Jin, Long [author.] | Li, Shuai [author.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries SpringerBriefs in Computer ScienceEditor: Singapore : Springer Nature Singapore : Imprint: Springer, 2023Edición: 1st ed. 2023Descripción: XI, 125 p. 1 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789819957668Tema(s): Robotics | Artificial intelligence -- Data processing | Robotics | Data Science | Robotic EngineeringFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 629.892 Clasificación LoC:TJ210.2-211.495Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1. Introduction -- Chapter 2. A Novel Model Predictive Control Scheme Based on an Improved Newton Algorithm -- Chapter 3. A Novel Recurrent Neural Network for Robot Control -- Chapter 4. A Projected Zeroing Neural Network Model for the Motion Generation and Control -- Chapter 5. A Regularization Ensemble Based on Levenberg-Marquardt Algorithm for Robot Calibration -- Chapter 6. Novel Evolutionary Computing Algorithms for Robot Calibration -- Chapter 7. A Highly Accurate Calibrator Based on a Novel Variable Step-Size Levenberg-Marquardt Algorithm -- Chapter 8. Conclusion and Future Work.
En: Springer Nature eBookResumen: This book mainly shows readers how to calibrate and control robots. In this regard, it proposes three control schemes: an error-summation enhanced Newton algorithm for model predictive control; RNN for solving perturbed time-varying underdetermined linear systems; and a new joint-drift-free scheme aided with projected ZNN, which can effectively improve robot control accuracy. Moreover, the book develops four advanced algorithms for robot calibration - Levenberg-Marquarelt with diversified regularizations; improved covariance matrix adaptive evolution strategy; quadratic interpolated beetle antennae search algorithm; and a novel variable step-size Levenberg-Marquardt algorithm - which can effectively enhance robot positioning accuracy. In addition, it is exceedingly difficult for experts in other fields to conduct robot arm calibration studies without calibration data. Thus, this book provides a publicly available dataset to assist researchers from other fields in conducting calibration experiments and validating their ideas. The book also discusses six regularization schemes based on its robot error models, i.e., L1, L2, dropout, elastic, log, and swish. Robots' positioning accuracy is significantly improved after calibration. Using the control and calibration methods developed here, readers will be ready to conduct their own research and experiments.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Acceso multiusuario

Chapter 1. Introduction -- Chapter 2. A Novel Model Predictive Control Scheme Based on an Improved Newton Algorithm -- Chapter 3. A Novel Recurrent Neural Network for Robot Control -- Chapter 4. A Projected Zeroing Neural Network Model for the Motion Generation and Control -- Chapter 5. A Regularization Ensemble Based on Levenberg-Marquardt Algorithm for Robot Calibration -- Chapter 6. Novel Evolutionary Computing Algorithms for Robot Calibration -- Chapter 7. A Highly Accurate Calibrator Based on a Novel Variable Step-Size Levenberg-Marquardt Algorithm -- Chapter 8. Conclusion and Future Work.

This book mainly shows readers how to calibrate and control robots. In this regard, it proposes three control schemes: an error-summation enhanced Newton algorithm for model predictive control; RNN for solving perturbed time-varying underdetermined linear systems; and a new joint-drift-free scheme aided with projected ZNN, which can effectively improve robot control accuracy. Moreover, the book develops four advanced algorithms for robot calibration - Levenberg-Marquarelt with diversified regularizations; improved covariance matrix adaptive evolution strategy; quadratic interpolated beetle antennae search algorithm; and a novel variable step-size Levenberg-Marquardt algorithm - which can effectively enhance robot positioning accuracy. In addition, it is exceedingly difficult for experts in other fields to conduct robot arm calibration studies without calibration data. Thus, this book provides a publicly available dataset to assist researchers from other fields in conducting calibration experiments and validating their ideas. The book also discusses six regularization schemes based on its robot error models, i.e., L1, L2, dropout, elastic, log, and swish. Robots' positioning accuracy is significantly improved after calibration. Using the control and calibration methods developed here, readers will be ready to conduct their own research and experiments.

UABC ; Perpetuidad

Con tecnología Koha