Improving Classifier Generalization [electronic resource] : Real-Time Machine Learning based Applications / by Rahul Kumar Sevakula, Nishchal K. Verma.
Tipo de material: TextoSeries Studies in Computational Intelligence ; 989Editor: Singapore : Springer Nature Singapore : Imprint: Springer, 2023Edición: 1st ed. 2023Descripción: XXIII, 166 p. 53 illus., 45 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789811950735Tema(s): Machine learning | Computational intelligence | Pattern recognition systems | Machine Learning | Computational Intelligence | Automated Pattern RecognitionFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.31 Clasificación LoC:Q325.5-.7Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | 1 | No para préstamo |
Acceso multiusuario
Introduction to classification algorithms -- Methods to improve generalization performance -- MVPC - a classifier with very low VC dimension -- Framework for reliable fault detection with sensor data -- Membership functions for Fuzzy Support Vector Machine in noisy environment -- Stacked Denoising Sparse Autoencoder based Fuzzy rule classifiers -- Epilogue.
This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification. .
UABC ; Perpetuidad