Computational Mathematics Modeling in Cancer Analysis [electronic resource] : Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings / edited by Wenjian Qin, Nazar Zaki, Fa Zhang, Jia Wu, Fan Yang, Chao Li.
Tipo de material: TextoSeries Lecture Notes in Computer Science ; 14243Editor: Cham : Springer Nature Switzerland : Imprint: Springer, 2023Edición: 1st ed. 2023Descripción: X, 172 p. 55 illus., 52 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031450877Tema(s): Image processing -- Digital techniques | Computer vision | Computer Imaging, Vision, Pattern Recognition and GraphicsFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006 Clasificación LoC:TA1501-1820TA1634Recursos en línea: Libro electrónico En: Springer Nature eBookResumen: This volume LNCS 14243 constitutes the refereed proceedings of the Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, on October 8, 2023, in Vancouver, BC, Canada. The 17 full papers presented were carefully reviewed and selected from 25 submissions. The conference focuses on the discovery of cutting-edge techniques addressing trends and challenges in theoretical, computational, and applied aspects of mathematical cancer data analysis.Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | 1 | No para préstamo |
Acceso multiusuario
This volume LNCS 14243 constitutes the refereed proceedings of the Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, on October 8, 2023, in Vancouver, BC, Canada. The 17 full papers presented were carefully reviewed and selected from 25 submissions. The conference focuses on the discovery of cutting-edge techniques addressing trends and challenges in theoretical, computational, and applied aspects of mathematical cancer data analysis.
UABC ; Perpetuidad