Machine Learning for Multimodal Healthcare Data [electronic resource] : First International Workshop, ML4MHD 2023, Honolulu, Hawaii, USA, July 29, 2023, Proceedings / edited by Andreas K. Maier, Julia A. Schnabel, Pallavi Tiwari, Oliver Stegle.

Colaborador(es): Maier, Andreas K [editor.] | Schnabel, Julia A [editor.] | Tiwari, Pallavi [editor.] | Stegle, Oliver [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Lecture Notes in Computer Science ; 14315Editor: Cham : Springer Nature Switzerland : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: X, 190 p. 44 illus., 38 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031476792Tema(s): Medical informatics | Health InformaticsFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 610.285 Clasificación LoC:R858-859.7Recursos en línea: Libro electrónicoTexto En: Springer Nature eBookResumen: This book constitutes the proceedings of the First International Workshop on Machine Learning for Multimodal Healthcare Date, ML4MHD 2023, held in Honolulu, Hawaii, USA, in July 2023. The 18 full papers presented were carefully reviewed and selected from 30 submissions. The workshop's primary objective was to bring together experts from diverse fields such as medicine, pathology, biology, and machine learning. With the aim to present novel methods and solutions that address healthcare challenges, especially those that arise from the complexity and heterogeneity of patient data.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

This book constitutes the proceedings of the First International Workshop on Machine Learning for Multimodal Healthcare Date, ML4MHD 2023, held in Honolulu, Hawaii, USA, in July 2023. The 18 full papers presented were carefully reviewed and selected from 30 submissions. The workshop's primary objective was to bring together experts from diverse fields such as medicine, pathology, biology, and machine learning. With the aim to present novel methods and solutions that address healthcare challenges, especially those that arise from the complexity and heterogeneity of patient data.

UABC ; Perpetuidad

Con tecnología Koha