Myopic Maculopathy Analysis [electronic resource] : MICCAI Challenge MMAC 2023, Held in Conjunction with MICCAI 2023, Virtual Event, October 8-12, 2023, Proceedings / edited by Bin Sheng, Hao Chen, Tien Yin Wong.

Colaborador(es): Sheng, Bin [editor.] | Chen, Hao [editor.] | Wong, Tien Yin [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Lecture Notes in Computer Science ; 14563Editor: Cham : Springer Nature Switzerland : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: X, 121 p. 33 illus., 31 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031548574Tema(s): Artificial intelligence | Computer vision | Artificial Intelligence | Computer VisionFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q334-342TA347.A78Recursos en línea: Libro electrónicoTexto
Contenidos:
Automated Detection of Myopic Maculopathy in MMAC 2023: Achievements in Classification, Segmentation, and Spherical Equivalent Prediction -- Swin-MMC: Swin-Based Model for Myopic Maculopathy Classification in Fundus Images -- Towards Label-efficient Deep Learning for Myopic Maculopathy Classification -- Ensemble Deep Learning Approaches for Myopic Maculopathy Plus Lesions Segmentation -- Beyond MobileNet: An improved MobileNet for Retinal Diseases -- Prediction of Spherical Equivalent With Vanilla ResNet -- Semi-supervised learning for Myopic Maculopathy Analysis -- A Clinically Guided Approach for Training Deep Neural Networks for Myopic Maculopathy Classification -- Classification of Myopic Maculopathy Images with Self-supervised Driven Multiple Instance Learning Network -- Self-supervised Learning and Data Diversity based Prediction of Spherical Equivalent -- Myopic Maculopathy Analysis using Multi-Task Learning and Pseudo Labeling.
En: Springer Nature eBookResumen: This book constitutes the MICCAI Challenge, MMAC 2023, that held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, which took place in October 2023. The 11 long papers included in this volume presents a wide range of state-of-the-art deep learning methods developed for the various tasks presented in the challenge.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Automated Detection of Myopic Maculopathy in MMAC 2023: Achievements in Classification, Segmentation, and Spherical Equivalent Prediction -- Swin-MMC: Swin-Based Model for Myopic Maculopathy Classification in Fundus Images -- Towards Label-efficient Deep Learning for Myopic Maculopathy Classification -- Ensemble Deep Learning Approaches for Myopic Maculopathy Plus Lesions Segmentation -- Beyond MobileNet: An improved MobileNet for Retinal Diseases -- Prediction of Spherical Equivalent With Vanilla ResNet -- Semi-supervised learning for Myopic Maculopathy Analysis -- A Clinically Guided Approach for Training Deep Neural Networks for Myopic Maculopathy Classification -- Classification of Myopic Maculopathy Images with Self-supervised Driven Multiple Instance Learning Network -- Self-supervised Learning and Data Diversity based Prediction of Spherical Equivalent -- Myopic Maculopathy Analysis using Multi-Task Learning and Pseudo Labeling.

This book constitutes the MICCAI Challenge, MMAC 2023, that held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, which took place in October 2023. The 11 long papers included in this volume presents a wide range of state-of-the-art deep learning methods developed for the various tasks presented in the challenge.

UABC ; Perpetuidad

Con tecnología Koha