Recommender Systems [electronic resource] : Frontiers and Practices / by Dongsheng Li, Jianxun Lian, Le Zhang, Kan Ren, Tun Lu, Tao Wu, Xing Xie.

Por: Li, Dongsheng [author.]Colaborador(es): Lian, Jianxun [author.] | Zhang, Le [author.] | Ren, Kan [author.] | Lu, Tun [author.] | Wu, Tao [author.] | Xie, Xing [author.] | SpringerLink (Online service)Tipo de material: TextoTextoEditor: Singapore : Springer Nature Singapore : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: XVI, 280 p. 92 illus., 75 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789819989645Tema(s): Information storage and retrieval systems | Data mining | Artificial intelligence | Information Storage and Retrieval | Data Mining and Knowledge Discovery | Artificial IntelligenceFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 025.04 Clasificación LoC:QA75.5-76.95Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1. Overview of Recommender Systems -- Chapter 2. Classic Recommendation Algorithms -- Chapter 3. Foundations of Deep Learning -- Chapter 4. Deep Learning-based Recommendation Algorithms -- Chapter 5. Recommender System Frontier Topics. Chapter 6. Practical Recommender System -- Chapter 7. Summary and Outlook.
En: Springer Nature eBookResumen: This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Chapter 1. Overview of Recommender Systems -- Chapter 2. Classic Recommendation Algorithms -- Chapter 3. Foundations of Deep Learning -- Chapter 4. Deep Learning-based Recommendation Algorithms -- Chapter 5. Recommender System Frontier Topics. Chapter 6. Practical Recommender System -- Chapter 7. Summary and Outlook.

This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch.

UABC ; Perpetuidad

Con tecnología Koha