Sentiment Analysis and its Application in Educational Data Mining [electronic resource] / by Soni Sweta.

Por: Sweta, Soni [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries SpringerBriefs in Computational IntelligenceEditor: Singapore : Springer Nature Singapore : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: XXI, 97 p. 8 illus., 6 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789819724741Tema(s): Computational intelligence | Data mining | Natural language processing (Computer science) | Machine learning | Computational Intelligence | Data Mining and Knowledge Discovery | Natural Language Processing (NLP) | Machine LearningFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q342Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1: Sentiment Analysis in Natural Language Processing -- Chapter 2: An Overview of Educational Data Mining -- Chapter 3: Impact of Sentiment Analysis in Education Sector -- Chapter 4: Techniques and Approaches in Sentiment Analysis -- Chapter 5: Machine Learning with Sentiment Analysis -- Chapter 6: Incorporation of Sentiment Analysis with Educational Data Mining -- Chapter 7: Preformation Evaluation using Sentiment Analysis.
En: Springer Nature eBookResumen: The book delves into the fundamental concepts of sentiment analysis, its techniques, and its practical applications in the context of educational data. The book begins by introducing the concept of sentiment analysis and its relevance in educational settings. It provides a thorough overview of the various techniques used for sentiment analysis, including natural language processing, machine learning, and deep learning algorithms. The subsequent chapters explore applications of sentiment analysis in educational data mining across multiple domains. The book illustrates how sentiment analysis can be employed to analyze student feedback and sentiment patterns, enabling educators to gain valuable insights into student engagement, motivation, and satisfaction. It also examines how sentiment analysis can be used to identify and address students' emotional states, such as stress, boredom, or confusion, leading to more personalized and effective interventions. Furthermore, the book explores the integration of sentiment analysis with other educational data mining techniques, such as clustering, classification, and predictive modeling. It showcases real-world case studies and examples that demonstrate how sentiment analysis can be combined with these approaches to improve educational decision-making, curriculum design, and adaptive learning systems.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Chapter 1: Sentiment Analysis in Natural Language Processing -- Chapter 2: An Overview of Educational Data Mining -- Chapter 3: Impact of Sentiment Analysis in Education Sector -- Chapter 4: Techniques and Approaches in Sentiment Analysis -- Chapter 5: Machine Learning with Sentiment Analysis -- Chapter 6: Incorporation of Sentiment Analysis with Educational Data Mining -- Chapter 7: Preformation Evaluation using Sentiment Analysis.

The book delves into the fundamental concepts of sentiment analysis, its techniques, and its practical applications in the context of educational data. The book begins by introducing the concept of sentiment analysis and its relevance in educational settings. It provides a thorough overview of the various techniques used for sentiment analysis, including natural language processing, machine learning, and deep learning algorithms. The subsequent chapters explore applications of sentiment analysis in educational data mining across multiple domains. The book illustrates how sentiment analysis can be employed to analyze student feedback and sentiment patterns, enabling educators to gain valuable insights into student engagement, motivation, and satisfaction. It also examines how sentiment analysis can be used to identify and address students' emotional states, such as stress, boredom, or confusion, leading to more personalized and effective interventions. Furthermore, the book explores the integration of sentiment analysis with other educational data mining techniques, such as clustering, classification, and predictive modeling. It showcases real-world case studies and examples that demonstrate how sentiment analysis can be combined with these approaches to improve educational decision-making, curriculum design, and adaptive learning systems.

UABC ; Perpetuidad

Con tecnología Koha