IoT/AI Control of VRF Distributed Building Air-Conditioners [electronic resource] / by Chuzo Ninagawa.

Por: Ninagawa, Chuzo [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoEditor: Singapore : Springer Nature Singapore : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: XIV, 205 p. 123 illus., 2 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789819991990Tema(s): Buildings -- Environmental engineering | Automation | Internet of things | Machine learning | Building Physics, HVAC | Automation | Internet of Things | Machine LearningFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 697 Clasificación LoC:TH7005-7699Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1. Innovations in Air-conditioning Energy Control -- Chapter 2. BACnet Communication Control -- Chapter 3. LON Communication Control -- Chapter 4. WEB Cloud Communication Control -- Chapter 5. Virtual Wattmeter for VRF Air-conditioner -- Chapter 6. Fast Automated Demand Response -- Chapter 7. Deep Learning for FastADR -- Chapter 8. IEEJ Power Supply-Demand Adjustment Service -- Chapter 9. OpenADR Communication Control -- Chapter 10. Optimal Real-Time Pricing Control -- Chapter 11. Power Control by Reinforcement Learning.
En: Springer Nature eBookResumen: This book describes new energy service controls of VRF (Variable Refrigerant Flow) air-conditioners, i.e., distributed-type air-conditioners for commercial buildings in the near future, in the context of the energy savings for CO2 reduction and the reform of the electric power system. In other words, this book introduces the state-of-the-art technology of the next-generation distributed building air-conditioning energy service system, from IoT cloud control to AI optimal control, as well as standards for the smart grid supply and demand adjustment market. Rather than simple saving energy by On Off operations or shifting set- temperatures, the author proposes technology that sends numerical commands for the air-conditioner inverters directly from the cloud. By using this innovative IoT method, this book describes how to realizes the AI optimal cloud control as a cluster of air-conditioners while machine-learning of each air conditioner's situation.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Chapter 1. Innovations in Air-conditioning Energy Control -- Chapter 2. BACnet Communication Control -- Chapter 3. LON Communication Control -- Chapter 4. WEB Cloud Communication Control -- Chapter 5. Virtual Wattmeter for VRF Air-conditioner -- Chapter 6. Fast Automated Demand Response -- Chapter 7. Deep Learning for FastADR -- Chapter 8. IEEJ Power Supply-Demand Adjustment Service -- Chapter 9. OpenADR Communication Control -- Chapter 10. Optimal Real-Time Pricing Control -- Chapter 11. Power Control by Reinforcement Learning.

This book describes new energy service controls of VRF (Variable Refrigerant Flow) air-conditioners, i.e., distributed-type air-conditioners for commercial buildings in the near future, in the context of the energy savings for CO2 reduction and the reform of the electric power system. In other words, this book introduces the state-of-the-art technology of the next-generation distributed building air-conditioning energy service system, from IoT cloud control to AI optimal control, as well as standards for the smart grid supply and demand adjustment market. Rather than simple saving energy by On Off operations or shifting set- temperatures, the author proposes technology that sends numerical commands for the air-conditioner inverters directly from the cloud. By using this innovative IoT method, this book describes how to realizes the AI optimal cloud control as a cluster of air-conditioners while machine-learning of each air conditioner's situation.

UABC ; Perpetuidad

Con tecnología Koha