Machine Learning in Single-Cell RNA-seq Data Analysis [electronic resource] / by Khalid Raza.

Por: Raza, Khalid [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries SpringerBriefs in Computational IntelligenceEditor: Singapore : Springer Nature Singapore : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: XVIII, 88 p. 25 illus., 16 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789819767038Tema(s): Artificial intelligence | Machine learning | Quantitative research | Artificial Intelligence | Machine Learning | Data Analysis and Big DataFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q334-342TA347.A78Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1. Introduction to Single-Cell RNA-seq Data Analysis -- Chapter 2. Preprocessing and Quality Control -- Chapter 3. Dimensionality Reduction and Clustering -- Chapter 4. Differential Expression Analysis -- Chapter 5. Trajectory Inference and Cell Fate Prediction -- Chapter 6. Emerging Topics and Future Directions.
En: Springer Nature eBookResumen: This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets. .
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Chapter 1. Introduction to Single-Cell RNA-seq Data Analysis -- Chapter 2. Preprocessing and Quality Control -- Chapter 3. Dimensionality Reduction and Clustering -- Chapter 4. Differential Expression Analysis -- Chapter 5. Trajectory Inference and Cell Fate Prediction -- Chapter 6. Emerging Topics and Future Directions.

This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets. .

UABC ; Perpetuidad

Con tecnología Koha