Algebraic Quasi-Fractal Logic of Smart Systems [electronic resource] : Theory and Practice / edited by Natalia Serdyukova, Vladimir Serdyukov.

Colaborador(es): Serdyukova, Natalia [editor.] | Serdyukov, Vladimir [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Intelligent Systems Reference Library ; 251Editor: Cham : Springer International Publishing : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: XVII, 269 p. 62 illus., 36 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031660405Tema(s): Computational intelligence | Artificial intelligence | Computational Intelligence | Artificial IntelligenceFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q342Recursos en línea: Libro electrónicoTexto
Contenidos:
Quasi fractal Propositional Algebra Digitalization of Propositional Algebra and NPC -- Quasi fractal Temporal Topological Logic with Time Parameter over Topological Space -- Application to Brownian Motion.
En: Springer Nature eBookResumen: This book is a continuation of the Algebraic Formalization of Smart Systems. Theory and Practice, 2018, and Algebraic Identification of Smart Systems. Theory and Practice, 2021. Algebraic logic refers to the connection between Boolean algebra and classical propositional calculus. This connection was discovered by George Boole and then developed by other mathematicians, such as C. S. Peirce and Ernst Schroeder. This trend culminated in the Lindenbaum-Tarski algebras. Here we try to connect algebraic logic and quasi-fractal technique, based on algebraic formalization of smart systems to get facts about smart systems functioning and connections of their qualitative and quantitative indicators. Basic techniques we used: algebraic quasi-fractal systems, Erdős-Rényi algorithm, a notion of -giant component of an algebraic system, fixed point theorem, purities, i.e., embeddings preserving -property of an algebraic system. The book is aimed for all interested in these issues.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Quasi fractal Propositional Algebra Digitalization of Propositional Algebra and NPC -- Quasi fractal Temporal Topological Logic with Time Parameter over Topological Space -- Application to Brownian Motion.

This book is a continuation of the Algebraic Formalization of Smart Systems. Theory and Practice, 2018, and Algebraic Identification of Smart Systems. Theory and Practice, 2021. Algebraic logic refers to the connection between Boolean algebra and classical propositional calculus. This connection was discovered by George Boole and then developed by other mathematicians, such as C. S. Peirce and Ernst Schroeder. This trend culminated in the Lindenbaum-Tarski algebras. Here we try to connect algebraic logic and quasi-fractal technique, based on algebraic formalization of smart systems to get facts about smart systems functioning and connections of their qualitative and quantitative indicators. Basic techniques we used: algebraic quasi-fractal systems, Erdős-Rényi algorithm, a notion of -giant component of an algebraic system, fixed point theorem, purities, i.e., embeddings preserving -property of an algebraic system. The book is aimed for all interested in these issues.

UABC ; Perpetuidad

Con tecnología Koha