Two-dimensional Product Cubic Systems, Vol. VII [electronic resource] : Self- Quadratic Vector Fields / by Albert C. J. Luo.

Por: Luo, Albert C. J [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoEditor: Cham : Springer Nature Switzerland : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: X, 232 p. 47 illus., 46 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031484834Tema(s): Multibody systems | Vibration | Mechanics, Applied | Dynamics | Nonlinear theories | Stochastic analysis | Multibody Systems and Mechanical Vibrations | Applied Dynamical Systems | Engineering Mechanics | Stochastic AnalysisFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 620.3 Clasificación LoC:TA352-356Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1: Self-quadratic and product-cubic Systems -- Chapter 2: Saddle-node singularity and bifurcation dynamics -- Chapter 3: Double-saddles and switching bifurcations.
En: Springer Nature eBookResumen: This book, the seventh of 15 related monographs, concerns nonlinear dynamics and singularity of cubic dynamical systems possessing a product-cubic vector field and a self-univariate quadratic vector field. The equilibrium singularity and bifurcation dynamics are discussed. The saddle-source (sink) is the appearing bifurcations for saddle and source (sink). The double-saddle equilibriums are the appearing bifurcations of the saddle-source and saddle-sink, and also the appearing bifurcations of the network of saddles, sink and source. The infinite-equilibriums for the switching bifurcations include: • inflection-saddle infinite-equilibriums, • hyperbolic-source (sink) infinite-equilibriums, • up-down (down-up) saddle infinite-equilibriums, • inflection-source (sink) infinite-equilibriums. Develops a theory of cubic dynamical systems possessing a product-cubic vector field and a self-quadratic vector field; Finds series/networks of equilibriums, 1-dimenional hyperbolic/hyperbolic-secant flows, finite-equilibrium switching; Presents sink and source separated by a connected hyperbolic-secant flow, and the (SO,SI) and (SI,SO)-saddles. .
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Chapter 1: Self-quadratic and product-cubic Systems -- Chapter 2: Saddle-node singularity and bifurcation dynamics -- Chapter 3: Double-saddles and switching bifurcations.

This book, the seventh of 15 related monographs, concerns nonlinear dynamics and singularity of cubic dynamical systems possessing a product-cubic vector field and a self-univariate quadratic vector field. The equilibrium singularity and bifurcation dynamics are discussed. The saddle-source (sink) is the appearing bifurcations for saddle and source (sink). The double-saddle equilibriums are the appearing bifurcations of the saddle-source and saddle-sink, and also the appearing bifurcations of the network of saddles, sink and source. The infinite-equilibriums for the switching bifurcations include: • inflection-saddle infinite-equilibriums, • hyperbolic-source (sink) infinite-equilibriums, • up-down (down-up) saddle infinite-equilibriums, • inflection-source (sink) infinite-equilibriums. Develops a theory of cubic dynamical systems possessing a product-cubic vector field and a self-quadratic vector field; Finds series/networks of equilibriums, 1-dimenional hyperbolic/hyperbolic-secant flows, finite-equilibrium switching; Presents sink and source separated by a connected hyperbolic-secant flow, and the (SO,SI) and (SI,SO)-saddles. .

UABC ; Perpetuidad

Con tecnología Koha