Two-dimensional Product-Cubic Systems, Vol. IV [electronic resource] : Crossing-quadratic Vector Fields / by Albert C. J. Luo.

Por: Luo, Albert C. J [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoEditor: Cham : Springer Nature Switzerland : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: X, 256 p. 42 illus., 41 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031571046Tema(s): Dynamics | Nonlinear theories | Dynamical systems | Multibody systems | Vibration | Mechanics, Applied | Engineering mathematics | Engineering -- Data processing | Universal algebra | Applied Dynamical Systems | Dynamical Systems | Multibody Systems and Mechanical Vibrations | Mathematical and Computational Engineering Applications | General Algebraic SystemsFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 515.39 Clasificación LoC:TA352-356QC20.7.N6Recursos en línea: Libro electrónicoTexto
Contenidos:
Preface -- Crossing-quadratic and product-cubic systems -- Double-inflection-saddles and bifurcation dynamics -- Parabola-saddles and bifurcation.
En: Springer Nature eBookResumen: This book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and . the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink). The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include: Parabola-source (sink) infinite-equilibriums, Inflection-source (sink) infinite-equilibriums, Hyperbolic (circular) sink-to source infinite-equilibriums, Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums. Develops a theory of cubic dynamical systems having a product-cubic vector field and a crossing-quadratic vector field; Shows equilibriums and paralleled hyperbolic and hyperbolic-secant flows with switching though infinite-equilibriums; Presents CCW and CW centers separated by a paralleled hyperbolic flow and positive and negative saddles. .
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Preface -- Crossing-quadratic and product-cubic systems -- Double-inflection-saddles and bifurcation dynamics -- Parabola-saddles and bifurcation.

This book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and . the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink). The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include: Parabola-source (sink) infinite-equilibriums, Inflection-source (sink) infinite-equilibriums, Hyperbolic (circular) sink-to source infinite-equilibriums, Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums. Develops a theory of cubic dynamical systems having a product-cubic vector field and a crossing-quadratic vector field; Shows equilibriums and paralleled hyperbolic and hyperbolic-secant flows with switching though infinite-equilibriums; Presents CCW and CW centers separated by a paralleled hyperbolic flow and positive and negative saddles. .

UABC ; Perpetuidad

Con tecnología Koha