Two-dimensional Two-product Cubic Systems, Vol I [electronic resource] : Different Product Structure Vector Fields / by Albert C. J. Luo.

Por: Luo, Albert C. J [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoEditor: Cham : Springer Nature Switzerland : Imprint: Springer, 2024Edición: 1st ed. 2024Descripción: X, 336 p. 55 illus., 54 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031484872Tema(s): Dynamics | Nonlinear theories | Engineering mathematics | Engineering -- Data processing | Multibody systems | Vibration | Mechanics, Applied | Universal algebra | Applied Dynamical Systems | Mathematical and Computational Engineering Applications | Multibody Systems and Mechanical Vibrations | General Algebraic SystemsFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 515.39 Clasificación LoC:TA352-356QC20.7.N6Recursos en línea: Libro electrónicoTexto
Contenidos:
Chapter 1 Cubic Systems with Two different Product Structures -- Chapter 2 Parabola-saddle and Saddle-source (sink) Singularity -- Chapter 3 Inflection-source (sink) flows and parabola-saddles -- Chapter 4Saddle-source (sink) with hyperbolic flow singularity -- Chapter 5 Equilibrium matrices with hyperbolic flows.
En: Springer Nature eBookResumen: This book, the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques. · Two-different product-cubic systems · Hybrid networks of higher-order equilibriums and flows · Hybrid series of simple equilibriums and hyperbolic flows · Higher-singular equilibrium appearing bifurcations · Higher-order singular flow appearing bifurcations · Parabola-source (sink) infinite-equilibriums · Parabola-saddle infinite-equilibriums · Inflection-saddle infinite-equilibriums · Inflection-source (sink) infinite-equilibriums · Infinite-equilibrium switching bifurcations. Develops a theory of nonlinear dynamics and singularity of two-different product-cubic dynamical systems; Presents networks of singular and simple equilibriums and hyperbolic flows in such different structure product-cubic systems; Reveals network switching bifurcations through infinite-equilibriums of parabola-source (sink) and parabola-saddles.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Chapter 1 Cubic Systems with Two different Product Structures -- Chapter 2 Parabola-saddle and Saddle-source (sink) Singularity -- Chapter 3 Inflection-source (sink) flows and parabola-saddles -- Chapter 4Saddle-source (sink) with hyperbolic flow singularity -- Chapter 5 Equilibrium matrices with hyperbolic flows.

This book, the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques. · Two-different product-cubic systems · Hybrid networks of higher-order equilibriums and flows · Hybrid series of simple equilibriums and hyperbolic flows · Higher-singular equilibrium appearing bifurcations · Higher-order singular flow appearing bifurcations · Parabola-source (sink) infinite-equilibriums · Parabola-saddle infinite-equilibriums · Inflection-saddle infinite-equilibriums · Inflection-source (sink) infinite-equilibriums · Infinite-equilibrium switching bifurcations. Develops a theory of nonlinear dynamics and singularity of two-different product-cubic dynamical systems; Presents networks of singular and simple equilibriums and hyperbolic flows in such different structure product-cubic systems; Reveals network switching bifurcations through infinite-equilibriums of parabola-source (sink) and parabola-saddles.

UABC ; Perpetuidad

Con tecnología Koha