Two-dimensional Self and Product Cubic Systems, Vol. I [electronic resource] : Self-linear and Crossing-quadratic Product Vector Field / by Albert C. J. Luo.
Tipo de material:

Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | 1 | No para préstamo |
Crossing and Product cubic Systems -- Double-inflection Saddles and Parabola-saddles -- Three Parabola-saddle Series and Switching Dynamics -- Parabola-saddles, (1:1) and (1:3)-Saddles and Centers -- Equilibrium Networks and Switching with Hyperbolic Flows.
Back cover Materials Albert C J Luo Two-dimensional Self and Product Cubic Systems, Vol. I Self-linear and crossing-quadratic product vector field This book is the twelfth of 15 related monographs on Cubic Systems, discusses self and product cubic systems with a self-linear and crossing-quadratic product vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed. The volume explains how the equilibrium series with connected hyperbolic and hyperbolic-secant flows exist in such cubic systems, and that the corresponding switching bifurcations are obtained through the inflection-source and sink infinite-equilibriums. Finally, the author illustrates how, in such cubic systems, the appearing bifurcations include saddle-source (sink) for equilibriums and inflection-source and sink flows for the connected hyperbolic flows, and the third-order saddle, sink and source are the appearing and switching bifurcations for saddle-source (sink) with saddles, source and sink, and also for saddle, sink and source. · Develops a theory of self and product cubic systems with a self-linear and crossing-quadratic product vector field; · Presents equilibrium series with flow singularity and connected hyperbolic and hyperbolic-secant flows; · Shows equilibrium series switching bifurcations through a range of sources and saddles on the infinite-equilibriums.
UABC ; Perpetuidad