Text Mining [electronic resource] : Concepts, Implementation, and Big Data Challenge / by Taeho Jo.

Por: Jo, Taeho [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Studies in Big Data ; 45Editor: Cham : Springer Nature Switzerland : Imprint: Springer, 2024Edición: 2nd ed. 2024Descripción: XV, 447 p. 368 illus., 147 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783031759765Tema(s): Computational intelligence | Telecommunication | Data mining | Information storage and retrieval systems | Quantitative research | Computational Intelligence | Communications Engineering, Networks | Data Mining and Knowledge Discovery | Information Storage and Retrieval | Data Analysis and Big DataFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q342Recursos en línea: Libro electrónicoTexto
Contenidos:
Part I: Foundation -- Introduction -- Text Indexing -- Text Encoding -- Text Association -- Part II: Text Categorization -- Text Categorization: Conceptual View -- Text Categorization: Approaches -- Text Categorization: Implementation -- Text Categorization: Evaluation -- Part III: Text Clustering -- Text Clustering: Conceptual View -- Text Clustering: Approaches -- Text Clustering: Implementation -- Text Clustering: Evaluation -- Part IV: Advanced Topics -- Text Summarization -- Text Segmentation -- Taxonomy Generation -- Dynamic Document Organization -- References -- Index.
En: Springer Nature eBookResumen: This popular book, updated as a textbook for classroom use, discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management. The book features exercises and code to help readers quickly learn and apply knowledge. Presents an array of updated techniques for preprocessing texts into structured forms, geared for classroom use; Outlines concepts of text categorization and clustering, their algorithms, and implementation guides; Includes advanced topics such as text summarization, text segmentation, topic mapping, and automatic text management.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Part I: Foundation -- Introduction -- Text Indexing -- Text Encoding -- Text Association -- Part II: Text Categorization -- Text Categorization: Conceptual View -- Text Categorization: Approaches -- Text Categorization: Implementation -- Text Categorization: Evaluation -- Part III: Text Clustering -- Text Clustering: Conceptual View -- Text Clustering: Approaches -- Text Clustering: Implementation -- Text Clustering: Evaluation -- Part IV: Advanced Topics -- Text Summarization -- Text Segmentation -- Taxonomy Generation -- Dynamic Document Organization -- References -- Index.

This popular book, updated as a textbook for classroom use, discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management. The book features exercises and code to help readers quickly learn and apply knowledge. Presents an array of updated techniques for preprocessing texts into structured forms, geared for classroom use; Outlines concepts of text categorization and clustering, their algorithms, and implementation guides; Includes advanced topics such as text summarization, text segmentation, topic mapping, and automatic text management.

UABC ; Perpetuidad

Con tecnología Koha