TY - BOOK AU - Howell,Kenneth B. TI - Principles of Fourier analysis T2 - Studies in advanced mathematics SN - 1420036904 (electronic bk.) AV - QA403.5 .H69 2001 U1 - 515/.2433 21 PY - 2001/// CY - Boca Raton, Fla. PB - Chapman & Hall/CRC KW - Fourier analysis KW - Fourier, Analyse de KW - MATHEMATICS KW - Infinity KW - bisacsh KW - fast KW - Electronic books N1 - Includes bibliographical references (p. 757) and index; 1; The starting point --; 2. Basic terminology, notation, and conventions --; 3; Basic analysis I : continuity and smoothness --; 4; Basic analysis II : integration and infinite series --; 5; Symmetry and periodicity --; 6; Elementary complex analysis --; 7; Functions of several variables --; 8; Heuristic derivation of the Fourier series formulas --; 9; The trigonometric Fourier series --; 10; Fourier series over finite intervals (sine and cosine series) --; 11; Inner products, norms, and orthogonality --; 12; The complex exponential Fourier series --; 13; Convergence and Fourier's conjecture --; 14; Convergence and Fourier's conjecture : the proofs --; 15; Derivatives and integrals of Fourier series --; 16; Applications --; 17; Heuristic derivation of the classical Fourier transform --; 18; Integrals on infinite intervals --; 19; The Fourier integral transforms --; 20; Classical Fourier transforms and classically transformable functions --; 21; Some elementary identities : translation, scaling, and conjugation --; 22; Differentiation and Fourier transforms --; 23; Gaussians and other very rapidly decreasing functions --; 24; Convolution and transforms of products --; 25; Correlation, square-integrable functions, and the fundamental identity of Fourier analysis --; 26; Identity sequences --; 27; Generalizing the classical theory : a naive approach --; 28; Fourier analysis in the analysis of systems --; 29; Gaussians as test functions, and proofs of some important theorems --; 30; A starting point for the generalized theory --; 31; Gaussian test functions --; 32; Generalized functions --; 33; Sequences and series of generalized functions --; 34; Basic transforms of generalized Fourier analysis --; 35; Generalized products, convolutions, and definite integrals --; 36; Periodic functions and regular arrays --; 37; General solutions to simple equations and the pole function --; 38; Periodic, regular arrays --; 39; Sampling and the discrete Fourier transform UR - http://148.231.10.114:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&an=155439 ER -