Metaheuristics for Machine Learning [electronic resource] : New Advances and Tools / edited by Mansour Eddaly, Bassem Jarboui, Patrick Siarry.
Tipo de material: TextoSeries Computational Intelligence Methods and ApplicationsEditor: Singapore : Springer Nature Singapore : Imprint: Springer, 2023Edición: 1st ed. 2023Descripción: XV, 223 p. 1 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789811938887Tema(s): Machine learning | Artificial intelligence | Computer science | Machine Learning | Artificial Intelligence | Theory and Algorithms for Application DomainsFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 006.31 Clasificación LoC:Q325.5-.7Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | 1 | No para préstamo |
Acceso multiusuario
1. From metaheuristics to automatic programming -- 2. Biclustering Algorithms Based on Metaheuristics: A Review -- 3. A Metaheuristic Perspective on Learning Classifier Systems -- 4. An evolutionary clustering approach using metaheuristics and unsupervised machine learning algorithms for customer segmentation -- 5. Applications of Metaheuristics in Parameter Optimization in Manufacturing Processes and Machine Health Monitoring -- 6. Evolving Machine Learning-based classifiers by metaheuristic approaches for underwater sonar target detection and recognition -- 7. Solving the Quadratic Knapsack Problem using a GRASP algorithm based on a multi-swap local search -- 8. Algorithmic vs Processing Manipulations to Scale Genetic Programming to Big Data Mining -- 9. Dynamic assignment problem of parking slots.
Using metaheuristics to enhance machine learning techniques has become trendy and has achieved major successes in both supervised (classification and regression) and unsupervised (clustering and rule mining) problems. Furthermore, automatically generating programs via metaheuristics, as a form of evolutionary computation and swarm intelligence, has now gained widespread popularity. This book investigates different ways of integrating metaheuristics into machine learning techniques, from both theoretical and practical standpoints. It explores how metaheuristics can be adapted in order to enhance machine learning tools and presents an overview of the main metaheuristic programming methods. Moreover, real-world applications are provided for illustration, e.g., in clustering, big data, machine health monitoring, underwater sonar targets, and banking.
UABC ; Perpetuidad