Chemical Elements in Plant and Soil: Parameters Controlling Essentiality [recurso electrónico] / by Stefan Fränzle.

Por: Fränzle, Stefan [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Tasks for Vegetation Science ; 45Editor: Dordrecht : Springer Netherlands, 2010Descripción: VIII, 196 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789048127528Tema(s): Life sciences | Analytical biochemistry | Chemistry, inorganic | Biochemistry | Molecular ecology | Life Sciences | Plant Biochemistry | Analytical Chemistry | Inorganic Chemistry | Molecular Ecology | Environmental Monitoring/AnalysisFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 572.572 Clasificación LoC:QK861-899Recursos en línea: Libro electrónicoTexto
Contenidos:
From the contents Introduction -- 1. The biological System of Elements. 1.1. Principles of Element Distribution in Plants. 1.2. Methodology of Inquiries into the Biological System of Elements -- 2. Autocatalytic Processes and the Role of Essential Elements in Plant Growth. 2.1. Biomass Stability in the Light of Gibbs's Phase Rule. 2.2. Coordination-Chemical Control of Element Uptake. 2.3. Some Remarks on Chemical Ecology -- 3. A Causal Model of Biochemical Essentiality. 3.1. Influence of Intrinsic Bonding Stability and Ligand Sensitivity on the Biocatalytic Properties of Metal Ions. 3.2. Complex Stability in Relation to other Bioorganic Parameters. 3.3. Scope of the Essentiality Model -- 4. The Evolution of Essentiality. 4.1. Evolution and Biochemical Catalysis. 4.2. The Three-Function-Rule as a Controlling Factor in the Origins of Essentiality. 4.3. Biogeochemical Fractionation Processes and essentiality Patterns in Different Taxa under Changing Biogeochemical Boundary Conditions -- References.
En: Springer eBooksResumen: Earlier works on plant essential elements have revealed a series of complicated, counter-intuitive relationships among various chemical elements in different plant species, due to both unlike usage of certain elements in plants and to different carriers effecting resorption and transport. In an attempt to provide a more coherent theory behind plant mineral nutrition, this groundbreaking book adopts a very different approach from the existing literature, presenting an explanation of the essentiality of chemical elements in biological systems and the application of stoichiometric network analysis (SNA) to the biological system of elements. Starting with data from biochemical environmental analysis, and a discussion of the phenomena involved in metal ion partition and autocatalytic behaviour, conditions and criteria controlling the partition of metals into biomass are investigated. Several rules are derived and investigated in terms of their interaction both in comparisons among contemporary organisms and in terms of evolution. This allows the construction, for example of a map which directly traces the biological feature of essentiality to parameters of coordination chemistry. The book will have worldwide appeal for researchers interested in fields such as soil/plant interactions, bioinorganic chemistry, plant nutrition, phytomining, bioremediation, biogeochemistry, nutrient cycling, soil chemistry, and cellular physiology.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QK861 -899 (Browse shelf(Abre debajo)) 1 No para préstamo 377471-2001

From the contents Introduction -- 1. The biological System of Elements. 1.1. Principles of Element Distribution in Plants. 1.2. Methodology of Inquiries into the Biological System of Elements -- 2. Autocatalytic Processes and the Role of Essential Elements in Plant Growth. 2.1. Biomass Stability in the Light of Gibbs's Phase Rule. 2.2. Coordination-Chemical Control of Element Uptake. 2.3. Some Remarks on Chemical Ecology -- 3. A Causal Model of Biochemical Essentiality. 3.1. Influence of Intrinsic Bonding Stability and Ligand Sensitivity on the Biocatalytic Properties of Metal Ions. 3.2. Complex Stability in Relation to other Bioorganic Parameters. 3.3. Scope of the Essentiality Model -- 4. The Evolution of Essentiality. 4.1. Evolution and Biochemical Catalysis. 4.2. The Three-Function-Rule as a Controlling Factor in the Origins of Essentiality. 4.3. Biogeochemical Fractionation Processes and essentiality Patterns in Different Taxa under Changing Biogeochemical Boundary Conditions -- References.

Earlier works on plant essential elements have revealed a series of complicated, counter-intuitive relationships among various chemical elements in different plant species, due to both unlike usage of certain elements in plants and to different carriers effecting resorption and transport. In an attempt to provide a more coherent theory behind plant mineral nutrition, this groundbreaking book adopts a very different approach from the existing literature, presenting an explanation of the essentiality of chemical elements in biological systems and the application of stoichiometric network analysis (SNA) to the biological system of elements. Starting with data from biochemical environmental analysis, and a discussion of the phenomena involved in metal ion partition and autocatalytic behaviour, conditions and criteria controlling the partition of metals into biomass are investigated. Several rules are derived and investigated in terms of their interaction both in comparisons among contemporary organisms and in terms of evolution. This allows the construction, for example of a map which directly traces the biological feature of essentiality to parameters of coordination chemistry. The book will have worldwide appeal for researchers interested in fields such as soil/plant interactions, bioinorganic chemistry, plant nutrition, phytomining, bioremediation, biogeochemistry, nutrient cycling, soil chemistry, and cellular physiology.

19

Con tecnología Koha