Deterministic Extraction from Weak Random Sources [recurso electrónico] / by Ariel Gabizon.
Tipo de material: TextoSeries Monographs in Theoretical Computer Science. An EATCS SeriesEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011Descripción: XII, 148 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642149030Tema(s): Computer science | Information theory | Geometry, algebraic | Combinatorics | Computer Science | Theory of Computation | Mathematics of Computing | Algebraic Geometry | CombinatoricsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 004.0151 Clasificación LoC:QA75.5-76.95Recursos en línea: Libro electrónico En: Springer eBooksResumen: A deterministic extractor is a function that extracts almost perfect random bits from a weak random source. In this research monograph the author constructs deterministic extractors for several types of sources. A basic theme in this work is a methodology of recycling randomness which enables increasing the output length of deterministic extractors to near optimal length. The author's main work examines deterministic extractors for bit-fixing sources, deterministic extractors for affine sources and polynomial sources over large fields, and increasing the output length of zero-error dispersers. This work will be of interest to researchers and graduate students in combinatorics and theoretical computer science.Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA75.5 -76.95 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 374891-2001 |
A deterministic extractor is a function that extracts almost perfect random bits from a weak random source. In this research monograph the author constructs deterministic extractors for several types of sources. A basic theme in this work is a methodology of recycling randomness which enables increasing the output length of deterministic extractors to near optimal length. The author's main work examines deterministic extractors for bit-fixing sources, deterministic extractors for affine sources and polynomial sources over large fields, and increasing the output length of zero-error dispersers. This work will be of interest to researchers and graduate students in combinatorics and theoretical computer science.
19