Holomorphic Function Theory in Several Variables [recurso electrónico] : An Introduction / by Christine Laurent-Thiébaut.
Tipo de material: TextoEditor: London : Springer London, 2011Descripción: XIII, 252p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780857290304Tema(s): Mathematics | Differential equations, partial | Mathematics | Several Complex Variables and Analytic SpacesFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 515.94 Clasificación LoC:QA331.7Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA331.7 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 370462-2001 |
Elementary local properties of holomorphic functions of several complex variables -- Currents and complex structures -- The Bochner-Martinelli-Koppelman kernel and formula applications -- Extensions of CR functions -- Extensions of holomorphic and CR functions on manifolds -- Domains of holomorphy and pseudoconvexity -- The Levi problem and the resolution of ? in strictly pseudoconvex domains -- Characterisation of removable singularities of CR functions on a strictly pseudoconvex boundary -- Appendices.
This book provides an introduction to complex analysis in several variables. The viewpoint of integral representation theory together with Grauert's bumping method offers a natural extension of single variable techniques to several variables analysis and leads rapidly to important global results. Applications focus on global extension problems for CR functions, such as the Hartogs-Bochner phenomenon and removable singularities for CR functions. Three appendices on differential manifolds, sheaf theory and functional analysis make the book self-contained. Each chapter begins with a detailed abstract, clearly demonstrating the structure and relations of following chapters. New concepts are clearly defined and theorems and propositions are proved in detail. Historical notes are also provided at the end of each chapter. Clear and succinct, this book will appeal to post-graduate students, young researchers seeking an introduction to holomorphic function theory in several variables and lecturers seeking a concise book on the subject.
19