Viability Theory [recurso electrónico] : New Directions / by Jean-Pierre Aubin, Alexandre M. Bayen, Patrick Saint-Pierre.
Tipo de material: TextoEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: XXI, 830p. 141 illus., 20 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642166846Tema(s): Mathematics | Computer science | Systems theory | Economics | Economics, Mathematical | Mathematics | Systems Theory, Control | Economic Theory | Math Applications in Computer Science | Control | Game Theory/Mathematical Methods | Game Theory, Economics, Social and Behav. SciencesFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 519 Clasificación LoC:Q295QA402.3-402.37Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | Q295 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 375375-2001 |
Overview and Organization -- Viability Kernels and Examples: Viability and Capturability -- Viability Problems in Robotics -- Viability and Dynamic Intertemporal Optimality -- Avoiding Skylla and Charybdis -- Inertia Functions, Viability Oscillators and Hysteresis -- Management of Renewable Resources -- Mathematical Properties of Viability Kernels: Connection Basins -- Local and Asymptotic Properties of Equilibria -- Viability and Capturability Properties of Evolutionary Systems -- Regulation of Control Systems -- Restoring Viability -- First-Order Partial Differential Equations: Viability Solutions to Hamilton-Jacobi Equations -- Regulation of Traffic -- Illustrations in Finance and Economics -- Viability Solutions to Conservation Laws -- Viability Solutions to Hamilton-Jacobi-Bellman Equations -- Appendices: Set-Valued Analysis at a Glance -- Convergence and Viability Theorems.
Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explaining and motivating the main concepts and illustrating them with numerous numerical examples taken from various fields.
19