Genetics and Genomics of Brachypodium [recurso electrónico] / edited by John P. Vogel.

Colaborador(es): Vogel, John P [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Plant Genetics and Genomics: Crops and Models ; 18Editor: Cham : Springer International Publishing : Imprint: Springer, 2016Edición: 1st ed. 2016Descripción: XII, 353 p. 200 illus., 65 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319269443Tema(s): Life sciences | Plant biochemistry | Plant anatomy | Plant development | Plant genetics | Plant physiology | Life Sciences | Plant Genetics & Genomics | Plant Biochemistry | Plant Anatomy/Development | Plant PhysiologyFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 581.35 Clasificación LoC:QH433Recursos en línea: Libro electrónicoTexto
Contenidos:
The Rise of Brachypodium as a Model System. - Phylogeny and Evolution of the Genus Brachypodium -- Molecular Cytogenetics in the Genus Brachypodium -- The Brachypodium distachyon Reference Genome -- Brachypodium Paleogenomics: From Genome Evolution to Translational Research in Grass Crops. Genome Size and the Role of Transposable Elements -- Genomic Diversity and Climate Adaptation in Brachypodium -- The microRNAs of Brachypodium -- Transformation and T-DNA Mutagenesis -- Mutagenesis: Chemical, Radiation, TILLING -- Library Resources: BACs, ESTs, Full-Length cDNAs, and Y2H -- Brachypodium distachyon Genetic Resources -- Brachypodium distachyon as a Model Species to Understand Grass Cell Walls -- Brachypodium Seed: A Potential Model for Studying Grain Development of Cereal Crops -- The Brachypodium distachyon Root System: A Tractable Model to Investigate Grass Roots -- Dissecting the Control of Flowering Time in Grasses Using Brachypodium distachyon. Brachypodium as a model for Grass and Cereal Diseases -- Brachypodium and the Abiotic Environment -- The Genus Brachypodium as a Model for Polyploidy and Perenniality -- Brachypodium as an Arabidopsis for the Grasses: Are We There Yet?.
En: Springer eBooksResumen: Grasses dominate many natural ecosystems and produce the bulk calories consumed by humans either directly in the form of grains or indirectly through forage/grain fed animals. In addition, grasses grown as biomass crops are poised to become a significant source of renewable energy. Despite their economic and environmental importance, research into the unique aspects of grass biology has been hampered by the lack of a truly tractable experimental model system. Over that past decade, the small, annual grass Brachypodium distachyon has emerged as a viable model system for the grasses. This book describes the development of extensive experimental resources (e.g. whole genome sequence, efficient transformation methods, insertional mutant collections, large germplasm collections, recombinant inbred lines, resequenced genomes) that have led many laboratories around the world to adopt B. distachyon as a model system. The use of B. distachyon to address a wide range of biological topics (e.g. disease resistance, cell wall composition, abiotic stress tolerance, root growth and development, floral development, natural diversity) is also discussed.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

The Rise of Brachypodium as a Model System. - Phylogeny and Evolution of the Genus Brachypodium -- Molecular Cytogenetics in the Genus Brachypodium -- The Brachypodium distachyon Reference Genome -- Brachypodium Paleogenomics: From Genome Evolution to Translational Research in Grass Crops. Genome Size and the Role of Transposable Elements -- Genomic Diversity and Climate Adaptation in Brachypodium -- The microRNAs of Brachypodium -- Transformation and T-DNA Mutagenesis -- Mutagenesis: Chemical, Radiation, TILLING -- Library Resources: BACs, ESTs, Full-Length cDNAs, and Y2H -- Brachypodium distachyon Genetic Resources -- Brachypodium distachyon as a Model Species to Understand Grass Cell Walls -- Brachypodium Seed: A Potential Model for Studying Grain Development of Cereal Crops -- The Brachypodium distachyon Root System: A Tractable Model to Investigate Grass Roots -- Dissecting the Control of Flowering Time in Grasses Using Brachypodium distachyon. Brachypodium as a model for Grass and Cereal Diseases -- Brachypodium and the Abiotic Environment -- The Genus Brachypodium as a Model for Polyploidy and Perenniality -- Brachypodium as an Arabidopsis for the Grasses: Are We There Yet?.

Grasses dominate many natural ecosystems and produce the bulk calories consumed by humans either directly in the form of grains or indirectly through forage/grain fed animals. In addition, grasses grown as biomass crops are poised to become a significant source of renewable energy. Despite their economic and environmental importance, research into the unique aspects of grass biology has been hampered by the lack of a truly tractable experimental model system. Over that past decade, the small, annual grass Brachypodium distachyon has emerged as a viable model system for the grasses. This book describes the development of extensive experimental resources (e.g. whole genome sequence, efficient transformation methods, insertional mutant collections, large germplasm collections, recombinant inbred lines, resequenced genomes) that have led many laboratories around the world to adopt B. distachyon as a model system. The use of B. distachyon to address a wide range of biological topics (e.g. disease resistance, cell wall composition, abiotic stress tolerance, root growth and development, floral development, natural diversity) is also discussed.

Con tecnología Koha