Propagation and Extinction Studies of Laminar Lean Premixed Syngas/Air Flames [electronic resource] / by Yang Zhang.

Por: Zhang, Yang [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Springer Theses, Recognizing Outstanding Ph.D. ResearchEditor: Singapore : Springer Singapore : Imprint: Springer, 2018Edición: 1st ed. 2018Descripción: XVIII, 127 p. 50 illus., 40 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9789811046155Tema(s): Fluid mechanics | Thermodynamics | Heat engineering | Heat transfer | Mass transfer | Energy efficiency | Engineering Fluid Dynamics | Engineering Thermodynamics, Heat and Mass Transfer | Thermodynamics | Energy EfficiencyFormatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD: 620.1064 Clasificación LoC:TA357-359Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction -- Experimental Approach 35 -- Numerical Approach -- Laminar flame speed of lean premixed H2/CO/air flames 71 -- Extinction limit of lean premixed H2/CO/air flames -- Lower flammability limit of H2/CO mixtures -- Dilution effect on the propagation and extinction of lean premixed syngas/air flames 139 -- Conclusion and recommendation -- Nomenclature.
En: Springer Nature eBookResumen: This thesis presents pioneering experimental and numerical studies on three aspects of the combustion characteristics of lean premixed syngas/air flames, namely the laminar flame speed, extinction limit and flammability limit. It illustrates a new extinction exponent concept, which enriches the combustion theory. Above all, the book provides the following: a) a series of carefully measured data and theoretical analyses to reveal the intrinsic mechanisms of the fuel composition effect on the propagation and extinction of lean syngas/air flames; b) a mixing model and correlation to predict the laminar flame speed of multi-component syngas fuels, intended for engineering computations; c) a new "extinction exponent" concept to describe the critical effects of chemical kinetics on the extinction of lean premixed syngas/air flames; and d) the effects and mechanism of the dilution of incombustible components on lean premixed syngas/air flames and the preferential importance among the thermal, chemical and diffusion effects.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos 1 No para préstamo

Acceso multiusuario

Introduction -- Experimental Approach 35 -- Numerical Approach -- Laminar flame speed of lean premixed H2/CO/air flames 71 -- Extinction limit of lean premixed H2/CO/air flames -- Lower flammability limit of H2/CO mixtures -- Dilution effect on the propagation and extinction of lean premixed syngas/air flames 139 -- Conclusion and recommendation -- Nomenclature.

This thesis presents pioneering experimental and numerical studies on three aspects of the combustion characteristics of lean premixed syngas/air flames, namely the laminar flame speed, extinction limit and flammability limit. It illustrates a new extinction exponent concept, which enriches the combustion theory. Above all, the book provides the following: a) a series of carefully measured data and theoretical analyses to reveal the intrinsic mechanisms of the fuel composition effect on the propagation and extinction of lean syngas/air flames; b) a mixing model and correlation to predict the laminar flame speed of multi-component syngas fuels, intended for engineering computations; c) a new "extinction exponent" concept to describe the critical effects of chemical kinetics on the extinction of lean premixed syngas/air flames; and d) the effects and mechanism of the dilution of incombustible components on lean premixed syngas/air flames and the preferential importance among the thermal, chemical and diffusion effects.

UABC ; Temporal ; 01/01/2021-12/31/2023.

Con tecnología Koha