The Mathematics of Knots [recurso electrónico] : Theory and Application / edited by Markus Banagl, Denis Vogel.
Tipo de material: TextoSeries Contributions in Mathematical and Computational Sciences ; 1Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: X, 357 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642156373Tema(s): Mathematics | Physiology -- Mathematics | Global differential geometry | Topology | Cell aggregation -- Mathematics | Mathematics | Topology | Manifolds and Cell Complexes (incl. Diff.Topology) | Differential Geometry | Physiological, Cellular and Medical Topics | Numerical and Computational PhysicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 514 Clasificación LoC:QA611-614.97Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA611 -614.97 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 375088-2001 |
Preface -- 1 Knots, Singular Embeddings, and Monodromy -- 2 Lower Bounds on Virtual Crossing Number and Minimal Surface Genus -- 3 A Survey of Twisted Alexander Polynomials -- 4 On Two Categorifications of the Arrow Polynomial for Virtual Knots -- 5 An Adelic Extension of the Jones Polynomial -- 6 Legendrian Grid Number One Knots and Augmentations of their Differential Algebras -- 7 Embeddings of Four-Valent Framed Graphs into 2-Surfaces -- 8 Geometric Topology and Field Theory on 3-Manifolds -- 9 From Goeritz Matrices to Quasi-Alternating Links -- 10 An Overview of Property 2R -- 11 DNA, Knots and Tangles.
The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.
19