000 03655nam a22004695i 4500
001 u372020
003 SIRSI
005 20160812080200.0
007 cr nn 008mamaa
008 110115s2011 xxu| s |||| 0|eng d
020 _a9781441977656
_9978-1-4419-7765-6
040 _cMX-MeUAM
050 4 _aTJ265
050 4 _aQC319.8-338.5
082 0 4 _a621.4021
_223
100 1 _aHaslach Jr., Henry W.
_eauthor.
245 1 0 _aMaximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure
_h[recurso electrónico] /
_cby Henry W. Haslach Jr.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2011.
300 _aXIV, 297 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aHistory of Non-Equilibrium Thermodynamics -- Energy Methods -- Evolution Construction for Homogeneous Thermodynamic Systems -- Viscoelasticity -- Viscoplasticity -- The Thermodynamic Relaxation Modulus as a Multi-scale Bridge from the Atomic Level to the Bulk Material -- Contact Geometric Structure for Non-equilibrium Thermodynamics. Bifurcations in the Generalized Energy Function -- Evolution Construction for Non-homogeneous Thermodynamic Systems -- Electromagnetism and Joule Heating -- Fracture.  .
520 _aMaximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also:    •             Explains the theory behind a thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes, based on supplementing the second law with a maximum dissipation criterion  •             Provides a geometric setting for non-equilibrium thermodynamics in differential topology and, in particular, contact structures that generalize Gibbs  •            Models processes that include thermoviscoelasticity, thermoviscoplasticity, thermoelectricity and dynamic fracture  •            Recovers several standard time-dependent constitutive models as maximum dissipation processes  •            Produces transport models that predict finite velocity of propagation  •            Emphasizes applications to the time-dependent modeling of soft biological tissue  Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.
650 0 _aEngineering.
650 0 _aThermodynamics.
650 0 _aMechanical engineering.
650 0 _aBiomaterials.
650 1 4 _aEngineering.
650 2 4 _aEngineering Thermodynamics, Heat and Mass Transfer.
650 2 4 _aThermodynamics.
650 2 4 _aBiomaterials.
650 2 4 _aMechanical Engineering.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781441977649
856 4 0 _zLibro electrónico
_uhttp://148.231.10.114:2048/login?url=http://link.springer.com/book/10.1007/978-1-4419-7765-6
596 _a19
942 _cLIBRO_ELEC
999 _c199900
_d199900