000 05154nam a22004335i 4500
001 u372109
003 SIRSI
005 20160812080205.0
007 cr nn 008mamaa
008 110610s2011 xxu| s |||| 0|eng d
020 _a9781441981196
_9978-1-4419-8119-6
040 _cMX-MeUAM
050 4 _aR-RZ
082 0 4 _a610
_223
100 1 _aRoselli, Robert J.
_eauthor.
245 1 0 _aBiotransport: Principles and Applications
_h[recurso electrónico] /
_cby Robert J. Roselli, Kenneth R. Diller.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2011.
300 _aXXVII, 650p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPart I Fundamentals of How People Learn (HPL) -- Introduction to HPL Methodology -- Part II. Fundamental Concepts in Biotransport -- Fundamental Concepts in Biotransport -- Modeling and Solving Biotransport Problems -- Part III. Biofluid Transport -- Rheology of Biological Fluids -- Macroscopic Approach for Biofluid Transport -- Shell Balance Approach for One Dimensional Biofluid Transport -- General Microscopic Approach for Biofluid Transport -- Part IV Bioheat Transport -- Heat Transfer Fundamentals -- Macroscopic Approach to Bioheat Transport -- Shell Balance Approach for 1-D Bioheat Transport -- General Microscopic Approach for Bioheat Transport -- Section V Biological Mass Transport -- Mass Transfer Fundamentals -- Macroscopic Approach to Biomass Transport -- Shell Balance Approach for 1-D Biomass Transport -- General Microscopic Approach for Biomass Transport.
520 _aBiotransport: Principles and Applications is written primarily for biomedical engineering and bioengineering students at the introductory level, but should prove useful for anyone interested in quantitative analysis of transport in living systems.  It is important that bioengineering students be exposed to the principles and subtleties of transport phenomena within the context of problems that arise in living systems.  These tend to have constitutive properties, compositions, and geometries that are quite distinct from those of typical inanimate systems.  The book derives its genesis from a novel Engineering Research Center (ERC) in Bioengineering Educational Technologies sponsored by the National Science Foundation.  This ERC was a multi-institutional consortium among Vanderbilt, Northwestern, Texas and Harvard/MIT Universities (VaNTH) based on collaboration among bioengineers, learning scientists and learning technologists. An objective was to develop state-of-the-art learning materials for students in bioengineering.  This text is an outgrowth of the VaNTH ERC and was designed with dual objectives: to provide a coherent and concise pedagogical exposition of biotransport that includes the domains of fluid, heat and mass flows, and to present a guide for teaching and studying in the "How People Learn" (HPL) framework, with appropriate supporting materials for students and teachers.  There is no other text that meets the latter objective.  The text is designed for use in either a traditional didactic course or in an active learning environment in which a course is organized around a series of open ended challenge problems.  The main portion of the text presents enduring concepts and analogies that form the foundations of biotransport.  Sections on biofluid, bioheat and biomass transport are further subdivided into chapters that progressively cover principles and applications of biotransport fundamentals, macroscopic biotransport, 1-D steady and unsteady state transport, and general multidimensional microscopic transport. Biotransport: Principles and Applications should serve as a clear and effective resource for students to learn the basic components of biotransport, so that class time can be freed to allow student-faculty interactions which focus on development of skills in adaptive thinking and solving open ended problems.  The text provides numerous example problems with detailed numerical solutions to help students learn effectively during self study.  Intermediate steps in derivations are included to make it easier for students to follow.  The text includes extensive examples of various learning challenges that have been written by the authors for use in their own biotransport courses.  Chapter summaries, review questions and over 230 problems are included at the end of chapters.
650 0 _aMedicine.
650 0 _aBiomedical engineering.
650 1 4 _aBiomedicine.
650 2 4 _aBiomedicine general.
650 2 4 _aBiophysics and Biological Physics.
650 2 4 _aBiomedical Engineering.
700 1 _aDiller, Kenneth R.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781441981189
856 4 0 _zLibro electrónico
_uhttp://148.231.10.114:2048/login?url=http://link.springer.com/book/10.1007/978-1-4419-8119-6
596 _a19
942 _cLIBRO_ELEC
999 _c199989
_d199989