000 03210nam a22004815i 4500
001 u373294
003 SIRSI
005 20160812084139.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 _a9783540887898
_9978-3-540-88789-8
040 _cMX-MeUAM
050 4 _aQC770-798
082 0 4 _a539.73
_223
100 1 _aBernas, Harry.
_eeditor.
245 1 0 _aMaterials Science with Ion Beams
_h[recurso electrónico] /
_cedited by Harry Bernas.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTopics in Applied Physics,
_x0303-4216 ;
_v116
505 0 _aFundamental Concepts of Ion-Beam Processing -- Precipitate and Microstructural Stability in Alloys Subjected to Sustained Irradiation -- Spontaneous Patterning of Surfaces by Low-Energy Ion Beams -- Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon -- Voids and Nanocavities in Silicon -- Damage Formation and Evolution in Ion-Implanted Crystalline Si -- Point Defect Kinetics and Extended-Defect Formation during Millisecond Processing of Ion-Implanted Silicon -- Magnetic Properties and Ion Beams: Why and How -- Structure and Properties of Nanoparticles Formed by Ion Implantation -- Metal Nanoclusters for Optical Properties -- Ion Beams in the Geological Sciences -- Ion-Beam Modification of Polymer Surfaces for Biological Applications.
520 _aThis book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.
650 0 _aPhysics.
650 0 _aParticle acceleration.
650 0 _aEngineering.
650 0 _aOptical materials.
650 1 4 _aPhysics.
650 2 4 _aParticle Acceleration and Detection, Beam Physics.
650 2 4 _aCondensed Matter Physics.
650 2 4 _aEngineering, general.
650 2 4 _aOptical and Electronic Materials.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540887881
830 0 _aTopics in Applied Physics,
_x0303-4216 ;
_v116
856 4 0 _zLibro electrónico
_uhttp://148.231.10.114:2048/login?url=http://link.springer.com/book/10.1007/978-3-540-88789-8
596 _a19
942 _cLIBRO_ELEC
999 _c201174
_d201174