000 06366cam a2200781Mi 4500
001 u380653
003 SIRSI
005 20160812084659.0
006 m o d
007 cr |n|---|||||
008 111017s2011 vtu ob 001 0 eng d
040 _aEBLCP
_beng
_epn
_cEBLCP
_dOCLCQ
_dOPELS
_dYDXCP
_dNTE
_dTEFOD
_dOCLCQ
_dNT
_dOCLCQ
_dOCLCF
_dOCLCQ
_dUBY
019 _a767516714
_a815260034
020 _a9780123813848 (electronic bk.)
020 _a0123813840 (electronic bk.)
020 _z9780123813831
020 _z0123813832
029 1 _aNZ1
_b15189798
050 4 _aQP105
082 0 4 _a599.01/01/53
049 _aTEFA
100 1 _aRubenstein, David.
245 1 0 _aBiofluid Mechanics
_h[recurso electrónico] :
_ban Introduction to Fluid Mechanics, Macrocirculation, and Microcirculation.
260 _aBurlington :
_bElsevier Science,
_c2011.
300 _a1 online resource (829 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aAcademic Press series in biomedical engineering
505 0 _aCover image; Table of Contents; Front-matter; Copyright; Preface; Chapter 1. Introduction; 1.1. Note to Students About the Textbook; 1.2. Biomedical Engineering; 1.3. Scope of Fluid Mechanics; 1.4. Scope of Biofluid Mechanics; 1.5. Dimensions and Units; Chapter 2. Fundamentals of Fluid Mechanics; 2.1. Fluid Mechanics Introduction; 2.2. Fundamental Fluid Mechanics Equations; 2.3. Analysis Methods; 2.4. Fluid as a Continuum; 2.5. Elemental Stress and Pressure; 2.6. Kinematics: Velocity, Acceleration, Rotation and Deformation; 2.7. Viscosity; 2.8. Fluid Motions; 2.9. Two-Phase Flows.
505 8 _a2.10. Changes in the Fundamental Relationships on the Microscale2.11. Fluid Structure Interaction; Chapter 3. Conservation Laws; 3.1. Fluid Statics Equations; 3.2. Buoyancy; 3.3. Conservation of Mass; 3.4. Conservation of Momentum; 3.5. Momentum Equation with Acceleration; 3.6. The First and Second Laws of Thermodynamics; 3.7. The Navier-Stokes Equations; 3.8. Bernoulli Equation; Chapter 4. The Heart; 4.1. Cardiac Physiology; 4.2. Cardiac Conduction System/Electrocardiogram; 4.3. The Cardiac Cycle; 4.4. Heart Motion; 4.5. Heart Valve Function; 4.6. Disease Conditions.
505 8 _aChapter 5. Blood Flow in Arteries and Veins5.1. Arterial System Physiology; 5.2. Venous System Physiology; 5.3. Blood Cells and Plasma; 5.4. Blood Rheology; 5.5. Pressure, Flow, and Resistance: Arterial System; 5.6. Pressure, Flow, and Resistance: Venous System; 5.7. Wave Propagation in Arterial Circulation; 5.8. Flow Separation at Bifurcations and at Walls; 5.9. Flow Through Tapering and Curved Channels; 5.10. Pulsatile Flow and Turbulence; 5.11. Disease Conditions; Chapter 6. Microvascular Beds; 6.1. Microcirculation Physiology; 6.2. Endothelial Cell and Smooth Muscle Cell Physiology.
505 8 _a6.3. Local Control of Blood Flow6.4. Pressure Distribution Throughout the Microvascular Beds; 6.5. Velocity Distribution Throughout the Microvascular Beds; 6.6. Interstitial Space Pressure and Velocity; 6.7. Hematocrit/Fahraeus-Lindquist Effect/Fahraeus Effect; 6.8. Plug Flow in Capillaries; 6.9. Characteristics of Two-phase Flow; 6.10. Interactions Between Cells and the Vessel Wall; 6.11. Disease Conditions; Chapter 7. Mass Transport and Heat Transfer in the Microcirculation; 7.1. Gas Diffusion; 7.2. Glucose Transport; 7.3. Vascular Permeability; 7.4. Energy Considerations.
505 8 _a7.5. Transport through Porous Media7.6. Microcirculatory Heat Transfer; 7.7. Cell Transfer During Inflammation/White Blood Cell Rolling and Sticking; Chapter 8. The Lymphatic System; 8.1. Lymphatic Physiology; 8.2. Lymph Formation; 8.3. Flow Through the Lymphatic System; 8.4. Disease Conditions; Chapter 9. Flow in the Lungs; 9.1. Lung Physiology; 9.2. Elasticity of the Lung Blood Vessels and Alveoli; 9.3. Pressure-Volume Relationship for Air Flow in the Lungs; 9.4. Oxygen/Carbon Dioxide Diffusion; 9.5. Oxygen/Carbon Dioxide Transport in the Blood; 9.6. Compressible Fluid Flow.
500 _a9.7. Disease Conditions.
520 _aBoth broad and deep in coverage, Rubenstein shows that fluid mechanics principles can be applied not only to blood circulation, but also to air flow through the lungs, joint lubrication, intraocular fluid movement and renal transport. Each section initiates discussion with governing equations, derives the state equations and then shows examples of their usage. Clinical applications, extensive worked examples, and numerous end of chapter problems clearly show the applications of fluid mechanics to biomedical engineering situations. A section on experimental techniques provides a springboard for.
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record.
650 0 _aHemodynamics.
650 0 _aBiomedical engineering.
650 2 _aBody Fluids
_xphysiology.
650 2 _aRheology.
650 2 _aBiomechanics.
650 2 _aBlood Circulation
_xphysiology.
650 2 _aHemodynamics
_xphysiology.
650 4 _aBiomedical engineering
_vCongresses.
650 4 _aBody fluid flow
_vCongresses.
650 4 _aHemodynamics
_vCongresses.
650 4 _aRheology (Biology)
_vCongresses.
650 4 _aZoology.
650 4 _aNatural history.
650 4 _aScience.
650 7 _aNATURE
_xAnimals
_xMammals.
_2bisacsh
650 7 _aSCIENCE
_xLife Sciences
_xZoology
_xMammals.
_2bisacsh
650 7 _aBiomedical engineering.
_2fast
_0(OCoLC)fst00832568
650 7 _aHemodynamics.
_2fast
_0(OCoLC)fst00955045
655 4 _aElectronic books.
655 0 _aElectronic books.
700 1 _aYin, Wei.
700 1 _aFrame, Mary D.
776 0 8 _iPrint version:
_aRubenstein, David.
_tBiofluid Mechanics : An Introduction to Fluid Mechanics, Macrocirculation, and Microcirculation.
_dBurlington : Elsevier Science, 2011
_z9780123813831
830 0 _aAcademic Press series in biomedical engineering.
856 4 0 _zLibro electrónico
_3ScienceDirect
_uhttp://148.231.10.114:2048/login?url=http://www.sciencedirect.com/science/book/9780123813831
596 _a19
942 _cLIBRO_ELEC
999 _c207574
_d207574