000 04742cmm a2200253 a 4500
001 u381821
003 MX-MeUAM
008 150504s2018 mx fo | spa d
040 _cMX-MeUAM
_bspa
050 1 4 _aTP248.A18
_bC38 2018
100 1 _aCastro Contreras, Rubén
_914653
245 1 0 _aPreparation and characterization of highly selective palladium catalysts supported on various carbon nanostructures for aerobic ethanol oxidation to acetic acid
_h[recurso electrónico] /
_cRubén Castro Contreras ; director, Mario Alberto Curiel Álvarez
260 _aMexicali, Baja California,
_c2018
300 _a1 recurso en línea, 302 p. ;
_bil. col.
500 _aMaestría y Doctorado en Ciencias e Ingeniería.
502 _aTesis (Doctorado) --Universidad Autónoma de Baja California. Instituto de Ingeniería, Mexicali, 2018.
504 _aIncluye referencias bibliográficas.
520 _aModern industrial chemistry is based on catalytic processes. Approximately 80 % of all catalytic processes require heterogeneous catalysts. Zero emission plants, green chemistry, and sustainable development have become a major driving force in technological innovation. Green chemistry prevents pollution through better process design than by managing emissions and wastes. Catalysis is one of the fundamental pillars of green chemistry, the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. The design and application of new catalysts and catalytic systems are simultaneously achieving the dual goals of environmental protection and economic benefit. Among the most important chemicals currently used, acetic acid is one of them. Acetic acid is produced both synthetically and by bacterial fermentation. The biological route accounts for only about 10 % of world production, about 75 % accounts by methanol carbonylation, and alternative methods account for the rest. Acetic acid is widely used as solvent in many industrial processes, manufacture of daily products, film industry, food additive, and testing blood in clinical laboratories. Thus, the acetic acid becomes a significant product for chemical, food, textile, cosmetic, agrochemical, and film industries due to its excellent physicochemical properties. Oxidation of alcohols to aldehydes, ketones or carboxylic acids is widely employed in heterogeneous catalysis. Among the most important alcohols for chemical industry, ethanol is one of them. An important application of ethanol is as reactant into oxidation reaction to acetic acid. ix Nowadays, silica, carbon, clay, zeolites, metal oxides, and other mesoporous materials are being used as inorganic solid supports. But, the quest of new materials as catalyst supports continues being an important topic for catalytic community. Carbon is currently used as catalyst support due to its unique physicochemical properties such as porosity, high surface area, acidic and basic media resistance, electrical conductivity, thermal resistance, and inertness. Carbon has also become a promising material in catalysis compared to the catalyst supports already used. Many carbon materials frequently used as catalyst supports due to their physicochemical properties and catalytic performances are activated carbon, carbon black, and graphite, which are suitable carbon materials to prepare supported metal catalysts for catalyzed chemical reactions. Activated carbon, carbon black, and graphite are not only the carbon materials used as catalyst supports, but also different carbon nanostructures which are synthesized by chemical methods. These carbon nanostructures such as graphene (G), multi-walled carbon nanotubes (CNT), carbon nanofibers (CNF), and fibrous carbon (FC) have unique physicochemical properties. It is well known that the incorporation of functional groups, heteroatoms, or thermal treatment improves the surface chemistry of such support. The use of palladium-group metals as active phase on carbon supports has showed high activity and selectivity towards the main product for oxidation reactions. Therefore, we propose to prepare highly selective palladium catalysts supported on carbon nanostructures for aerobic ethanol oxidation to acetic acid. Besides, the synthesis of carbon nanostructures, the preparation method of palladium catalysts, and the results of aerobic ethanol oxidation are presented.
650 7 _aÁcido acético
_2lemb
_vTesis y disertaciones académicas.
700 1 _aCuriel Alvarez, Mario Alberto
_edir.
_97588
710 2 _aUniversidad Autónoma de Baja California.
_bInstituto de Ingeniería
_93321
856 4 _zTesis Digital
_uhttps://drive.google.com/open?id=1nrtH29LpMFNIGlfsaGwMWxzbJ45b-lV6
942 _cTESIS
999 _c232032
_d232032