000 04226nam a22005895i 4500
001 978-3-030-01743-9
003 DE-He213
005 20210201191257.0
007 cr nn 008mamaa
008 181123s2018 gw | s |||| 0|eng d
020 _a9783030017439
_9978-3-030-01743-9
050 4 _aS1-S972
072 7 _aTVB
_2bicssc
072 7 _aTEC003000
_2bisacsh
072 7 _aTVB
_2thema
082 0 4 _a630
_223
245 1 0 _aPulse Improvement
_h[electronic resource] :
_bPhysiological, Molecular and Genetic Perspectives /
_cedited by Shabir Hussain Wani, Mukesh Jain.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXII, 241 p. 12 illus., 11 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
500 _aAcceso multiusuario
505 0 _a1. Pulses for human nutritional security -- 2. Genomic resources and omics-assisted breeding approaches for pulse crop improvement -- 3. Molecular and Genomic Approaches to Peanut Improvement -- 4. Response of Pulses to Drought and Salinity Stress Response: A Physiological Perspective -- 5. Salt Stress Responses in Pigeon pea (Cajanuscajan L.) -- 6. Pisum improvement against biotic stress: current status and future prospects -- 7. Insights into Insect Resistance in Pulse Crops: Problems and Preventions -- 8. Genetic and Genomic approaches for improvement in Mungbean (Vigna radiata L.) -- 9. Phosphate homeostasis: links with seed quality and stress tolerance in chickpea -- 10. Genome engineering tools for functional genomics and crop improvement in legumes -- Index -- .
520 _aAdvances in molecular biology and genome research in the form of molecular breeding and genetic engineering put forward innovative prospects for improving productivity of many pulses crops. Pathways have been discovered, which include regulatory elements that modulate stress responses (e.g., transcription factors and protein kinases) and functional genes, which guard the cells (e.g., enzymes for generating protective metabolites and proteins). In addition, numerous quantitative trait loci (QTLs) associated with elevated stress tolerance have been cloned, resulting in the detection of critical genes for stress tolerance. Together these networks can be used to enhance stress tolerance in pulses. This book summarizes recent advances in pulse research for increasing productivity, improving biotic and abiotic stress tolerance, and enhancing nutritional quality.
541 _fUABC ;
_cTemporal ;
_d01/01/2021-12/31/2023.
650 0 _aAgriculture.
650 0 _aPlant physiology.
650 0 _aPlant breeding.
650 0 _aPlant genetics.
650 0 _aNutrition   .
650 1 4 _aAgriculture.
_0https://scigraph.springernature.com/ontologies/product-market-codes/L11006
650 2 4 _aPlant Physiology.
_0https://scigraph.springernature.com/ontologies/product-market-codes/L33020
650 2 4 _aPlant Breeding/Biotechnology.
_0https://scigraph.springernature.com/ontologies/product-market-codes/L24060
650 2 4 _aPlant Genetics and Genomics.
_0https://scigraph.springernature.com/ontologies/product-market-codes/L32020
650 2 4 _aNutrition.
_0https://scigraph.springernature.com/ontologies/product-market-codes/C18000
700 1 _aWani, Shabir Hussain.
_eeditor.
_0(orcid)0000-0002-7456-4090
_1https://orcid.org/0000-0002-7456-4090
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aJain, Mukesh.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030017422
776 0 8 _iPrinted edition:
_z9783030017446
856 4 0 _zLibro electrónico
_uhttp://148.231.10.114:2048/login?url=https://doi.org/10.1007/978-3-030-01743-9
912 _aZDB-2-SBL
912 _aZDB-2-SXB
942 _cLIBRO_ELEC
999 _c241606
_d241605