000 04291nam a22006015i 4500
001 978-3-319-43694-4
003 DE-He213
005 20210201191402.0
007 cr nn 008mamaa
008 181022s2018 gw | s |||| 0|eng d
020 _a9783319436944
_9978-3-319-43694-4
050 4 _aQH432
072 7 _aPSVH
_2bicssc
072 7 _aSCI070000
_2bisacsh
072 7 _aPSV
_2thema
072 7 _aPSAK
_2thema
082 0 4 _a591.35
_223
245 1 4 _aThe Brassica napus Genome
_h[electronic resource] /
_cedited by Shengyi Liu, Rod Snowdon, Boulos Chalhoub.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXXII, 283 p. 40 illus., 37 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aCompendium of Plant Genomes,
_x2199-4781
500 _aAcceso multiusuario
505 0 _aEconomic/Academic importance -- Cytology -- Background of the sequencing initiatives and genome sequence delivery -- Genetic map, QTLs, association study and genes cloning -- Deciphering genome organization of the B. napus polyploid (including genome assembling and annotation) -- TE -- Syntenic genes from alpha to triplication and sextuplication -- Homoeologous Exchanges and Gene loss generate diversity and differentiate the B. napus genome from that of its ancestors -- Epigenomics and Alternative splicing -- Asymmetrical evolution.
520 _aThis book describes how the genome sequence contributes to our understanding of allopolyploidisation and the genome evolution, genetic diversity, complex trait regulation and knowledge-based breeding of this important crop. Numerous examples demonstrate how widespread homoeologous genome rearrangements and exchanges have moulded structural genome diversity following a severe polyploidy bottleneck. The allopolyploid crop species Brassica napus has the most highly duplicated plant genome to be assembled to date, with the largest number of annotated genes. Examples are provided for use of the genome sequence to identify and capture diversity for important agronomic traits, including seed quality and disease resistance. The increased potential for detailed ge ne discovery using high-density genetic mapping, quantitative genetics and transcriptomic analyses is described in the context of genome availability and illustrated with recent examples. Intimate knowledge of the highly-duplicated gene space, on the one hand, and the repeat landscape on the other, particularly in comparison to the two diploid progenitor genomes, provide a fundamental basis for new insights into the regulatory mechanisms that are coupled with selection for polyploid success and crop evolution.
541 _fUABC ;
_cTemporal ;
_d01/01/2021-12/31/2023.
650 0 _aAnimal genetics.
650 0 _aPlant breeding.
650 0 _aAgriculture.
650 1 4 _aAnimal Genetics and Genomics.
_0https://scigraph.springernature.com/ontologies/product-market-codes/L32030
650 2 4 _aPlant Breeding/Biotechnology.
_0https://scigraph.springernature.com/ontologies/product-market-codes/L24060
650 2 4 _aAgriculture.
_0https://scigraph.springernature.com/ontologies/product-market-codes/L11006
700 1 _aLiu, Shengyi.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aSnowdon, Rod.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aChalhoub, Boulos.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319436920
776 0 8 _iPrinted edition:
_z9783319436937
776 0 8 _iPrinted edition:
_z9783030095833
830 0 _aCompendium of Plant Genomes,
_x2199-4781
856 4 0 _zLibro electrónico
_uhttp://148.231.10.114:2048/login?url=https://doi.org/10.1007/978-3-319-43694-4
912 _aZDB-2-SBL
912 _aZDB-2-SXB
942 _cLIBRO_ELEC
999 _c242878
_d242877