000 03484nam a22005655i 4500
001 978-3-319-61149-5
003 DE-He213
005 20210201191536.0
007 cr nn 008mamaa
008 170704s2018 gw | s |||| 0|eng d
020 _a9783319611495
_9978-3-319-61149-5
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aMelin, Patricia.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aNew Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension
_h[electronic resource] /
_cby Patricia Melin, German Prado-Arechiga.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aVIII, 88 p. 48 illus., 47 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Computational Intelligence,
_x2625-3704
500 _aAcceso multiusuario
505 0 _aFrom the Content: Introduction -- Fuzzy Logic for Arterial Hypertension Classification -- Design of a Neuro Design of a Neuro Design of Arterial Hypertension.
520 _aIn this book, a new approach for diagnosis and risk evaluation of ar-terial hypertension is introduced. The new approach was implement-ed as a hybrid intelligent system combining modular neural net-works and fuzzy systems. The different responses of the hybrid system are combined using fuzzy logic. Finally, two genetic algo-rithms are used to perform the optimization of the modular neural networks parameters and fuzzy inference system parameters. The experimental results obtained using the proposed method on real pa-tient data show that when the optimization is used, the results can be better than without optimization. This book is intended to be a refer-ence for scientists and physicians interested in applying soft compu-ting techniques, such as neural networks, fuzzy logic and genetic algorithms, in medical diagnosis, but also in general to classification and pattern recognition and similar problems.
541 _fUABC ;
_cTemporal ;
_d01/01/2021-12/31/2023.
650 0 _aComputational intelligence.
650 0 _aBiomedical engineering.
650 0 _aHealth informatics.
650 1 4 _aComputational Intelligence.
_0https://scigraph.springernature.com/ontologies/product-market-codes/T11014
650 2 4 _aBiomedical Engineering and Bioengineering.
_0https://scigraph.springernature.com/ontologies/product-market-codes/T2700X
650 2 4 _aHealth Informatics.
_0https://scigraph.springernature.com/ontologies/product-market-codes/H28009
700 1 _aPrado-Arechiga, German.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319611488
776 0 8 _iPrinted edition:
_z9783319611501
830 0 _aSpringerBriefs in Computational Intelligence,
_x2625-3704
856 4 0 _zLibro electrónico
_uhttp://148.231.10.114:2048/login?url=https://doi.org/10.1007/978-3-319-61149-5
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cLIBRO_ELEC
999 _c244679
_d244678