000 03497nam a22006255i 4500
001 978-981-19-4594-6
003 DE-He213
005 20240207153436.0
007 cr nn 008mamaa
008 220902s2023 si | s |||| 0|eng d
020 _a9789811945946
_9978-981-19-4594-6
050 4 _aTJ212-225
050 4 _aTJ210.2-211.495
072 7 _aTJFM
_2bicssc
072 7 _aTEC004000
_2bisacsh
072 7 _aTJFM
_2thema
082 0 4 _a629.8
_223
100 1 _aNinagawa, Chuzo.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aAI Time Series Control System Modelling
_h[electronic resource] /
_cby Chuzo Ninagawa.
250 _a1st ed. 2023.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2023.
300 _aXI, 237 p. 192 illus., 1 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
500 _aAcceso multiusuario
505 0 _aIntroduction -- Linear Time Series Modeling -- Deep Learning AI Modeling -- LSTM AI Modeling -- Optimal Control by Time-Series AI Model -- The Reality of Time Series Learning Data Collection -- Practical Work on Time Series AI Modeling.
520 _aThis book describes the practical application of artificial intelligence (AI) methods using time series data in system control. This book consistently discusses the application of machine learning to the analysis and modelling of time series data of physical quantities to be controlled in the field of system control. Since dynamic systems are not stable steady states but changing transient states, the changing transient states depend on the state history before the change. In other words, it is essential to predict the change from the present to the future based on the time history of each variable in the target system, and to manipulate the system to achieve the desired change. In short, time series is the key to the application of AI machine learning to system control. This is the philosophy of this book: "time series data" + "AI machine learning" = "new practical control methods". This book can give my helps to undergradate or graduate students, institute researchers and senior engineers whose scientific background are engineering, mathematics, physics and other natural sciences.
541 _fUABC ;
_cPerpetuidad
650 0 _aControl engineering.
650 0 _aRobotics.
650 0 _aAutomation.
650 0 _aMachine learning.
650 0 _aArtificial intelligence.
650 0 _aSystem theory.
650 0 _aControl theory.
650 1 4 _aControl, Robotics, Automation.
650 2 4 _aMachine Learning.
650 2 4 _aControl and Systems Theory.
650 2 4 _aArtificial Intelligence.
650 2 4 _aSystems Theory, Control .
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811945939
776 0 8 _iPrinted edition:
_z9789811945953
776 0 8 _iPrinted edition:
_z9789811945960
856 4 0 _zLibro electrónico
_uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-19-4594-6
912 _aZDB-2-INR
912 _aZDB-2-SXIT
942 _cLIBRO_ELEC
999 _c260244
_d260243