000 | 06859nam a22007335i 4500 | ||
---|---|---|---|
001 | 978-3-031-25599-1 | ||
003 | DE-He213 | ||
005 | 20240207153534.0 | ||
007 | cr nn 008mamaa | ||
008 | 230308s2023 sz | s |||| 0|eng d | ||
020 |
_a9783031255991 _9978-3-031-25599-1 |
||
050 | 4 | _aHD30.19-.29 | |
072 | 7 |
_aUF _2bicssc |
|
072 | 7 |
_aCOM018000 _2bisacsh |
|
072 | 7 |
_aUXJ _2thema |
|
082 | 0 | 4 |
_a005.3 _223 |
245 | 1 | 0 |
_aMachine Learning, Optimization, and Data Science _h[electronic resource] : _b8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 18-22, 2022, Revised Selected Papers, Part I / _cedited by Giuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Gabriele La Malfa, Panos Pardalos, Giuseppe Di Fatta, Giovanni Giuffrida, Renato Umeton. |
250 | _a1st ed. 2023. | ||
264 | 1 |
_aCham : _bSpringer Nature Switzerland : _bImprint: Springer, _c2023. |
|
300 |
_aXXIV, 616 p. 203 illus., 180 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Computer Science, _x1611-3349 ; _v13810 |
|
500 | _aAcceso multiusuario | ||
505 | 0 | _aExplainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting -- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms -- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling -- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial -- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models -- Deep Learning -- Machine Learning -- Reinforcement Learning -- Neural Networks -- Deep Reinforcement Learning -- Optimization -- Global Optimization -- Multi-Objective Optimization -- Computational Optimization -- Data Science -- Big Data -- Data Analytics -- Artificial Intelligence -- Detection of Morality in Tweets based on the Moral Foundation Theory -- Matrix completion for the prediction of yearly country and industry-level CO2 emissions -- A Benchmark for Real-Time Anomaly Detection Algorithms Applied in Industry 4.0 -- A Matrix Factorization-based Drug-virus Link Prediction Method for SARS CoV -- Drug Prioritization -- Hyperbolic Graph Codebooks -- A Kernel-Based Multilayer Perceptron Framework to Identify Pathways Related to Cancer Stages -- Loss Function with Memory for Trustworthiness Threshold Learning: Case of Face and Facial Expression Recognition -- Machine learning approaches for predicting Crystal Systems: a brief review and a case study -- LS-PON: a Prediction-based Local Search for Neural Architecture Search -- Local optimisation of Nystrm samples through stochastic gradient descent -- Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting -- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms -- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling -- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial -- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models -- Deep Learning -- Machine Learning -- Reinforcement Learning -- Neural Networks -- Deep Reinforcement Learning -- Optimization -- Global Optimization -- Multi-Objective Optimization -- Computational Optimization -- Data Science -- Big Data -- Data Analytics -- Artificial Intelligence. | |
520 | _aThis two-volume set, LNCS 13810 and 13811, constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022. The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications. | ||
541 |
_fUABC ; _cPerpetuidad |
||
650 | 0 |
_aInformation technology _xManagement. |
|
650 | 0 | _aComputer networks . | |
650 | 0 | _aComputer systems. | |
650 | 0 | _aData structures (Computer science). | |
650 | 0 | _aInformation theory. | |
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aMachine learning. | |
650 | 1 | 4 | _aComputer Application in Administrative Data Processing. |
650 | 2 | 4 | _aComputer Communication Networks. |
650 | 2 | 4 | _aComputer System Implementation. |
650 | 2 | 4 | _aData Structures and Information Theory. |
650 | 2 | 4 | _aArtificial Intelligence. |
650 | 2 | 4 | _aMachine Learning. |
700 | 1 |
_aNicosia, Giuseppe. _eeditor. _0(orcid)0000-0002-0650-3157 _1https://orcid.org/0000-0002-0650-3157 _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aOjha, Varun. _eeditor. _0(orcid)0000-0002-9256-1192 _1https://orcid.org/0000-0002-9256-1192 _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aLa Malfa, Emanuele. _eeditor. _0(orcid)0000-0002-6254-0470 _1https://orcid.org/0000-0002-6254-0470 _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aLa Malfa, Gabriele. _eeditor. _0(orcid)0000-0002-1682-2063 _1https://orcid.org/0000-0002-1682-2063 _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aPardalos, Panos. _eeditor. _0(orcid)0000-0001-9623-8053 _1https://orcid.org/0000-0001-9623-8053 _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aDi Fatta, Giuseppe. _eeditor. _0(orcid)0000-0003-3096-2844 _1https://orcid.org/0000-0003-3096-2844 _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aGiuffrida, Giovanni. _eeditor. _0(orcid)0000-0001-5490-779X _1https://orcid.org/0000-0001-5490-779X _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aUmeton, Renato. _eeditor. _0(orcid)0000-0002-5561-6932 _1https://orcid.org/0000-0002-5561-6932 _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031255984 |
776 | 0 | 8 |
_iPrinted edition: _z9783031256004 |
830 | 0 |
_aLecture Notes in Computer Science, _x1611-3349 ; _v13810 |
|
856 | 4 | 0 |
_zLibro electrónico _uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-25599-1 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cLIBRO_ELEC | ||
999 |
_c261174 _d261173 |