000 | 03918nam a22005775i 4500 | ||
---|---|---|---|
001 | 978-3-031-38230-7 | ||
003 | DE-He213 | ||
005 | 20250516155922.0 | ||
007 | cr nn 008mamaa | ||
008 | 230915s2024 sz | s |||| 0|eng d | ||
020 |
_a9783031382307 _9978-3-031-38230-7 |
||
050 | 4 | _aTK7867-7867.5 | |
072 | 7 |
_aTJFC _2bicssc |
|
072 | 7 |
_aTEC008010 _2bisacsh |
|
072 | 7 |
_aTJFC _2thema |
|
082 | 0 | 4 |
_a621.3815 _223 |
100 | 1 |
_aJain, Vikram. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aTowards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning _h[electronic resource] : _bJourney from Single-core Acceleration to Multi-core Heterogeneous Systems / _cby Vikram Jain, Marian Verhelst. |
250 | _a1st ed. 2024. | ||
264 | 1 |
_aCham : _bSpringer Nature Switzerland : _bImprint: Springer, _c2024. |
|
300 |
_aXXIII, 186 p. 93 illus., 83 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aChapter 1: Introduction -- Chapter 2 Algorithmic Background for Machine Learning -- Chapter 3 Scoping the Landscape of (Extreme) Edge Machine Learning Processors -- Chapter 4 Hardware-Software Co-optimization through Design Space Exploration -- Chapter 5 Energy Efficient Single-core Hardware Acceleration -- Chapter 6 TinyVers: A Tiny Versatile All-Digital Heterogeneous Multi-core System-on-Chip -- Chapter 7 DIANA: Digital and ANAlog Heterogeneous Multi-core System-on-Chip -- Chapter 8 Networks-on-chip to Enable Large-scale Multi-core ML Acceleration -- Chapter 9 Conclusion. | |
520 | _aThis book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations. Discusses the need for scaling to multi-core systems for machine learning and several architectural and software optimizations; Covers single-core, homogeneous and heterogeneous multi-core Systems-on-chip for machine learning applications; Discusses the benefits of heterogeneity in the context of machine learning. . | ||
541 |
_fUABC ; _cPerpetuidad |
||
650 | 0 | _aElectronic circuits. | |
650 | 0 | _aEmbedded computer systems. | |
650 | 0 | _aMachine learning. | |
650 | 0 | _aMicroprocessors. | |
650 | 0 | _aComputer architecture. | |
650 | 1 | 4 | _aElectronic Circuits and Systems. |
650 | 2 | 4 | _aEmbedded Systems. |
650 | 2 | 4 | _aMachine Learning. |
650 | 2 | 4 | _aProcessor Architectures. |
700 | 1 |
_aVerhelst, Marian. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031382291 |
776 | 0 | 8 |
_iPrinted edition: _z9783031382314 |
776 | 0 | 8 |
_iPrinted edition: _z9783031382321 |
856 | 4 | 0 |
_zLibro electrónico _uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-38230-7 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cLIBRO_ELEC | ||
999 |
_c273426 _d273425 |