000 | 03726nam a22006015i 4500 | ||
---|---|---|---|
001 | 978-3-031-42667-4 | ||
003 | DE-He213 | ||
005 | 20250516155924.0 | ||
007 | cr nn 008mamaa | ||
008 | 231004s2024 sz | s |||| 0|eng d | ||
020 |
_a9783031426674 _9978-3-031-42667-4 |
||
050 | 4 | _aTK5102.9 | |
072 | 7 |
_aTJF _2bicssc |
|
072 | 7 |
_aUYS _2bicssc |
|
072 | 7 |
_aTEC067000 _2bisacsh |
|
072 | 7 |
_aTJF _2thema |
|
072 | 7 |
_aUYS _2thema |
|
082 | 0 | 4 |
_a621.382 _223 |
100 | 1 |
_aPaul, Arati. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aDimensionality Reduction of Hyperspectral Imagery _h[electronic resource] / _cby Arati Paul, Nabendu Chaki. |
250 | _a1st ed. 2024. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2024. |
|
300 |
_aXVIII, 116 p. 53 illus., 29 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aIntroduction -- Remote sensing -- Digital image processing -- Hyperspectral image characteristics -- Dimensionality reduction -- Dataset description -- Pooling based band extraction -- Ranking based band selection -- Band optimization -- Data Driven approach -- Conclusion. | |
520 | _aThis book provides information about different types of dimensionality reduction (DR) methods and their effectiveness in hyperspectral data processing. The authors first explain how hyperspectral imagery (HSI) plays an important role in remote sensing due to its high spectral resolution that enables better identification of different materials on the earth's surface. The authors go on to describe potential challenges due to HSI being acquired in hundreds of narrow and contiguous bands, represented as a 3-dimensional image cube, often causing the bands to contain information redundancy. They then show how processing a large number of bands adds challenges in terms of computation complexity that reduces efficiency. The authors then present how DR is an essential step in hyperspectral data analysis to solve these issues. Overall, the book helps readers understand the DR processes and its impact in effective HSI analysis. Presents a data driven approach for dimensionality reduction (DR); Discusses the effect of spatial dimension and noise in the context of DR of hyperspectral imagery (HSI); Includes an optimization based approach for DR challenges and identification of gap areas in existing algorithms along with suitable solutions. | ||
541 |
_fUABC ; _cPerpetuidad |
||
650 | 0 | _aSignal processing. | |
650 | 0 |
_aImage processing _xDigital techniques. |
|
650 | 0 | _aComputer vision. | |
650 | 0 | _aComputational intelligence. | |
650 | 0 | _aGeographic information systems. | |
650 | 1 | 4 | _aSignal, Speech and Image Processing. |
650 | 2 | 4 | _aComputer Imaging, Vision, Pattern Recognition and Graphics. |
650 | 2 | 4 | _aComputational Intelligence. |
650 | 2 | 4 | _aGeographical Information System. |
700 | 1 |
_aChaki, Nabendu. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031426667 |
776 | 0 | 8 |
_iPrinted edition: _z9783031426681 |
776 | 0 | 8 |
_iPrinted edition: _z9783031426698 |
856 | 4 | 0 |
_zLibro electrónico _uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-42667-4 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cLIBRO_ELEC | ||
999 |
_c273478 _d273477 |