000 03726nam a22006015i 4500
001 978-3-031-42667-4
003 DE-He213
005 20250516155924.0
007 cr nn 008mamaa
008 231004s2024 sz | s |||| 0|eng d
020 _a9783031426674
_9978-3-031-42667-4
050 4 _aTK5102.9
072 7 _aTJF
_2bicssc
072 7 _aUYS
_2bicssc
072 7 _aTEC067000
_2bisacsh
072 7 _aTJF
_2thema
072 7 _aUYS
_2thema
082 0 4 _a621.382
_223
100 1 _aPaul, Arati.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aDimensionality Reduction of Hyperspectral Imagery
_h[electronic resource] /
_cby Arati Paul, Nabendu Chaki.
250 _a1st ed. 2024.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2024.
300 _aXVIII, 116 p. 53 illus., 29 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Remote sensing -- Digital image processing -- Hyperspectral image characteristics -- Dimensionality reduction -- Dataset description -- Pooling based band extraction -- Ranking based band selection -- Band optimization -- Data Driven approach -- Conclusion.
520 _aThis book provides information about different types of dimensionality reduction (DR) methods and their effectiveness in hyperspectral data processing. The authors first explain how hyperspectral imagery (HSI) plays an important role in remote sensing due to its high spectral resolution that enables better identification of different materials on the earth's surface. The authors go on to describe potential challenges due to HSI being acquired in hundreds of narrow and contiguous bands, represented as a 3-dimensional image cube, often causing the bands to contain information redundancy. They then show how processing a large number of bands adds challenges in terms of computation complexity that reduces efficiency. The authors then present how DR is an essential step in hyperspectral data analysis to solve these issues. Overall, the book helps readers understand the DR processes and its impact in effective HSI analysis. Presents a data driven approach for dimensionality reduction (DR); Discusses the effect of spatial dimension and noise in the context of DR of hyperspectral imagery (HSI); Includes an optimization based approach for DR challenges and identification of gap areas in existing algorithms along with suitable solutions.
541 _fUABC ;
_cPerpetuidad
650 0 _aSignal processing.
650 0 _aImage processing
_xDigital techniques.
650 0 _aComputer vision.
650 0 _aComputational intelligence.
650 0 _aGeographic information systems.
650 1 4 _aSignal, Speech and Image Processing.
650 2 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
650 2 4 _aComputational Intelligence.
650 2 4 _aGeographical Information System.
700 1 _aChaki, Nabendu.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031426667
776 0 8 _iPrinted edition:
_z9783031426681
776 0 8 _iPrinted edition:
_z9783031426698
856 4 0 _zLibro electrónico
_uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-42667-4
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cLIBRO_ELEC
999 _c273478
_d273477