000 03834nam a22005535i 4500
001 978-3-031-35378-9
003 DE-He213
005 20250516155953.0
007 cr nn 008mamaa
008 240201s2024 sz | s |||| 0|eng d
020 _a9783031353789
_9978-3-031-35378-9
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aMendel, Jerry M.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aExplainable Uncertain Rule-Based Fuzzy Systems
_h[electronic resource] /
_cby Jerry M. Mendel.
250 _a3rd ed. 2024.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2024.
300 _aXXIII, 580 p. 257 illus., 231 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Part 1: Type-1 Fuzzy Sets and Systems -- Short Primers on Type-1 Fuzzy Sets and Fuzzy Logic -- Type-1 Fuzzy Logic Systems -- Part 2: Type-2 Fuzzy Sets -- Sources of Uncertainty -- Type-2 Fuzzy Sets -- Operations on and Properties OF Type-2 Fuzzy Sets -- Type-2 Relations and Compositions -- Centroid of a Type-2 Fuzzy Set: Type-Reduction -- Part 3: Type-2 Fuzzy Logic Systems -- Mamdani Interval Type-2 Fuzzy Logic Systems (IT2 FLSS) -- TSK Interval Type-2 Fuzzy Logic Systems -- General Type-2 Fuzzy Logic Systems (GT2 FLSS) -- Conclusion.
520 _aThe third edition of this textbook presents a further updated approach to fuzzy sets and systems that can model uncertainty - i.e., "type-2" fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications, from time-series forecasting to knowledge mining to classification to control and to explainable AI (XAI). This latest edition again begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty, leading to type-2 fuzzy sets and systems. New material is included about how to obtain fuzzy set word models that are needed for XAI, similarity of fuzzy sets, a quantitative methodology that lets one explain in a simple way why the different kinds of fuzzy systems have the potential for performance improvements over each other, and new parameterizations of membership functions that have the potential for achieving even greater performance for all kinds of fuzzy systems. For hands-on experience, the book provides information on accessing MATLAB, Java, and Python software to complement the content. The book features a full suite of classroom material.
541 _fUABC ;
_cPerpetuidad
650 0 _aComputational intelligence.
650 0 _aTelecommunication.
650 0 _aArtificial intelligence.
650 0 _aNeural networks (Computer science) .
650 1 4 _aComputational Intelligence.
650 2 4 _aCommunications Engineering, Networks.
650 2 4 _aArtificial Intelligence.
650 2 4 _aMathematical Models of Cognitive Processes and Neural Networks.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031353772
776 0 8 _iPrinted edition:
_z9783031353796
776 0 8 _iPrinted edition:
_z9783031353802
856 4 0 _zLibro electrónico
_uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-35378-9
912 _aZDB-2-INR
912 _aZDB-2-SXIT
942 _cLIBRO_ELEC
999 _c274106
_d274105