000 03636nam a22005775i 4500
001 978-3-031-57567-9
003 DE-He213
005 20250516160039.0
007 cr nn 008mamaa
008 240528s2024 sz | s |||| 0|eng d
020 _a9783031575679
_9978-3-031-57567-9
050 4 _aTK5101-5105.9
072 7 _aTJK
_2bicssc
072 7 _aTEC041000
_2bisacsh
072 7 _aTJK
_2thema
082 0 4 _a621.382
_223
245 1 0 _aDistributed Machine Learning and Computing
_h[electronic resource] :
_bTheory and Applications /
_cedited by M. Hadi Amini.
250 _a1st ed. 2024.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2024.
300 _aX, 158 p. 29 illus., 28 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aBig and Integrated Artificial Intelligence,
_x2662-4141 ;
_v2
505 0 _aChapter 1. Distributed Machine Learning and Computing: An Overview -- Chapter 2. Distributed Multi-agent Meta Learning for Trajectory Design in Wireless Drone Networks -- Chapter 3. Heterogeneity Aware Distributed Machine Learning at the Wireless Edge for Health IoT Applications: An EEG Data Case Study -- Chapter 4. A Comprehensive Review of Artificial Intelligence and Machine Learning Methods for Modern Health-care Systems -- Chapter 5. Vertical Federated Learning: Principles, Applications, and Future Frontiers -- Chapter 6. Decentralization of Energy Systems with Blockchain: Bridging Top-down and Bottom-up Management of the Electricity Grid.-Chapter 7. Empowering Distributed Solutions in Renewable Energy Systems and Grid Optimization.
520 _aThis book focuses on a wide range of distributed machine learning and computing algorithms and their applications in healthcare and engineering systems. The contributors explore how these techniques can be applied to different real-world problems. It is suitable for students and researchers interested in conducting research in multidisciplinary areas that rely on distributed machine learning and computing techniques. Specifies the value of efficient theoretical methods in dealing with large-scale decision-making problems; Provides an investigation of distributed machine learning and optimization algorithms for large-scale networks; Includes basics and mathematical foundations needed to analyze and address the interdependent complex networks.
541 _fUABC ;
_cPerpetuidad
650 0 _aTelecommunication.
650 0 _aComputational intelligence.
650 0 _aMachine learning.
650 0 _aCooperating objects (Computer systems).
650 1 4 _aCommunications Engineering, Networks.
650 2 4 _aComputational Intelligence.
650 2 4 _aMachine Learning.
650 2 4 _aCyber-Physical Systems.
700 1 _aAmini, M. Hadi.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031575662
776 0 8 _iPrinted edition:
_z9783031575686
776 0 8 _iPrinted edition:
_z9783031575693
830 0 _aBig and Integrated Artificial Intelligence,
_x2662-4141 ;
_v2
856 4 0 _zLibro electrónico
_uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-57567-9
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cLIBRO_ELEC
999 _c275140
_d275139